(2)如图10-2.点D不动.将Rt△DEF绕着顶点D旋转(0°<∠<90°).这时两块三角板重叠部分为任意四边形DNCM.这时四边形DNCM的面积是△ABC的面积的 ,(3)若Rt△DEF的顶点D在AB上移动.且两条直角边与Rt△ABC的两条直角边相交.是否存在一点.使得两块三角板重叠部分的面积是Rt△ABC的面积的.如果存在.请在图10-3中画出此时的图形.并说明点D在AB上的位置.如果不存在.说明理由. 查看更多

 

题目列表(包括答案和解析)

(1)已知:有两块完全相同的含45°角的三角板,如图1,将Rt△DEF的直角顶点D放在Rt△ABC斜边AB的中点处,这时两块三角板重叠部分△DBC的面积是△ABC的面积的
 

(2)如图2,点D不动,将Rt△DEF绕着顶点D旋转α(0°<∠α<90°),这时两块三角板重叠部分为任意四边形DNCM,这时四边形DNCM的面积是△ABC的面积的
 

(3)若Rt△DEF的顶点D在AB上移动(不与点A、B重合),且两条直角边与Rt△ABC的两条直角边相交,是否存在一点,使得两块三角板重叠部分的面积是Rt△ABC的面积的
49
?如果存在,请在图3中画出此时的图形,并说明点D在AB上的位置;如果不存在,说明理由.
精英家教网

查看答案和解析>>

(1)已知:有两块完全相同的含45°角的三角板,如图1,将Rt△DEF的直角顶点D放在Rt△ABC斜边AB的中点处,这时两块三角板重叠部分△DBC的面积是△ABC的面积的______;
(2)如图2,点D不动,将Rt△DEF绕着顶点D旋转α(0°<∠α<90°),这时两块三角板重叠部分为任意四边形DNCM,这时四边形DNCM的面积是△ABC的面积的______;
(3)若Rt△DEF的顶点D在AB上移动(不与点A、B重合),且两条直角边与Rt△ABC的两条直角边相交,是否存在一点,使得两块三角板重叠部分的面积是Rt△ABC的面积的数学公式?如果存在,请在图3中画出此时的图形,并说明点D在AB上的位置;如果不存在,说明理由.

查看答案和解析>>

Rt△ABC≌Rt△DEF,∠ABC=∠DEF=90°,将△ABC和△DEF重叠放置如图①.
(1)保持△ABC不动,将△DEF绕点E顺时针旋转60°,使DF经过点C,如图②.求证:△BCF是等边三角形;
(2)保持△ABC不动,将△DEF绕点E顺时针旋转90°,如图③,判断AC与DF的位置关系,并说明理由.
作业宝

查看答案和解析>>

(1)已知:有两块完全相同的含45°角的三角板,如图1,将Rt△DEF的直角顶点D放在Rt△ABC斜边AB的中点处,这时两块三角板重叠部分△DBC的面积是△ABC的面积的______;
(2)如图2,点D不动,将Rt△DEF绕着顶点D旋转α(0°<∠α<90°),这时两块三角板重叠部分为任意四边形DNCM,这时四边形DNCM的面积是△ABC的面积的______;
(3)若Rt△DEF的顶点D在AB上移动(不与点A、B重合),且两条直角边与Rt△ABC的两条直角边相交,是否存在一点,使得两块三角板重叠部分的面积是Rt△ABC的面积的?如果存在,请在图3中画出此时的图形,并说明点D在AB上的位置;如果不存在,说明理由.

查看答案和解析>>

如图,在平面直角坐标系中,点轴的正半轴上, ⊙轴于 两点,交轴于两点,且的中点,轴于点,若点的坐标为(-2,0),

(1)求点的坐标.                          

(2)连结,求证:

(3) 如图10-2,过点作⊙的切线,交轴于点.动点在⊙的圆周上运动时,的比值是否发生变化,若不变,求出比值;若变化,说明变化规律

 

查看答案和解析>>


同步练习册答案