如图,正三角形、正方形、正六边形等正n边形与圆的形状有差异,我们将正n边形与圆的接近程度称为“接近度”、在研究“接近度”时,应保证相似图形的“接近度”相等、
(1)设正n边形的每个内角的度数为m°,将正n边形的“接近度”定义为|180-m|、于是,|180-m|越小,该正n边形就越接近于圆,
①若n=20,则该正n边形的“接近度”等于
;
②当“接近度”等于
时,正n边形就成了圆.
(2)设一个正n边形的半径(即正n边形外接圆的半径)为R,边心距(即正n边形的中心到各边的距离)为r,将正n边形的“接近度”定义为|R-r|,于是|R-r|越小,正n边形就越接近于圆;你认为这种说
法是否合理?若不合理,请给出正n边形“接近度”的一个合理定义.