(1)若与的关系式是.请说明:当时.这种变换满足上述两个要求, 查看更多

 

题目列表(包括答案和解析)

已知:如图,在平面直角坐标系中,正方形 OABC的顶点B的坐标为(2,2),A、C两点分别在x轴、y轴上.P是BC边上一点(不与B点重合),连AP并延长与x轴交于点E,当点P在边BC上移动时,△AOE的面积随之变化.
①设PB=a(0<a≤2).求出△AOE的面积S与a的函数关系式.
②根据①的函数关系式,确定点P在什么位置时,S△AOE=2,并求出此时直线AE的解析式.
③在所给的平面直角坐标系中画出①中函数的图象和函数S=-a+2的简图.
④设函数S=-a+2的图象交a轴于点G,交S轴于点D,点M是①的函数图象上的一动点,过M点向S轴作垂线交函数S=-a+2的图象于点H,过M点向a轴作垂线交函数S=-a+2的图象于点Q,请问DQ•HG的值是否会变化?若不变,精英家教网请求出此值;若变化,请说明理由.

查看答案和解析>>

已知:如图,在平面直角坐标系内,直线y=
3
4
x上有一点A,AD⊥x轴于D,且AD=3,C是x轴上的一点,AC⊥AO,长度等于OD的线段EF在x轴上沿OC方向以1/s的速度向点C运动(运动前EF和OD重合,当F点与C重合时停止运动,包括起点、终点),过E,F分别作OC的垂线交直角边于点P、点Q,连接线段PD,QD,PQ,PQ交线段AD于点M,若设EF运动的时间为t(s).
(1)写出A点坐标
 
.PE=
 
(用含t的代数式表示线段),其中自变量t的取值范围为
 

(2)是否存在t的值,使得线段PD⊥QD?若存在,请求出相应的t的值,若不精英家教网存在,请说明理由;
(3)①当t=
4
5
秒时,线段AM=
 

②求线段AM关于自变量t的函数解析式,并求出AM的最大值.

查看答案和解析>>

已知:如图,⊙P与x轴相切于坐标原点O,点A(0,2)是⊙P与y轴的交点,点B(-2
2
,0)在x精英家教网轴上.连接BP交⊙P于点C,连接AC并延长交x轴于点D.
(1)求线段BC的长;
(2)求直线AC的关系式;
(3)当点B在x轴上移动时,是否存在点B,使△BOP相似于△AOD?若存在,求出符合条件的点B的坐标;若不存在,请说明理由.

查看答案和解析>>

巳知:如图,梯形ABCD中,AD∥BC,AB=CD=3cm,∠C=60°,BD⊥CD.精英家教网
(1)求BC、AD的长度;
(2)若点P从点B开始沿BC边向点C以2cm/秒的速度运动,点Q从点C开始沿CD边向点D以1cm/秒的速度运动,当P、Q分别从B、C同时出发时,写出五边形ABPQD的面积S与运动时间t之间的函数关系式,并写出自变量t的取值范围(不包含点P在B、C两点的情况);
(3)在(2)的前提下,是否存在某一时刻t,使线段PQ把梯形ABCD分成两部分的面积比为1:5?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

已知:如图①,正方形ABCD与矩形DEFG的边AD、DE在同一直线l上,点G在CD上.正方形ABCD的边长为a,矩形DEFG的长DE为b,宽DG为3(其中a>b>3).若矩形DEFG沿直线l向左以每秒1个单位的长度的速度运动(点D、E始终在直线l上).若矩形DEFG在运动过程中与正方形ABCD的重叠部分的面积记作S,运动时间记为t秒(0≤t≤m),其中S与t的函数图象如图②所示.矩形DEFG的顶点经运动后的对应点分别记作D′、E′、F′、G′.
(1)根据题目所提供的信息,可求得b=
 
,a=
 
,m=
 

(2)连接AG′、CF′,设以AG′和CF′为边的两个正方形的面积之和为y,求当0≤t≤5时,y与时间t之间的函数关系式,并求出y的最小值以及y取最小值时t的值;
(3)如图③,这是在矩形DEFG运动过程中,直线AG′第一次与直线CF′垂直的情形,求此时t的值.并探究:在矩形DEFG继续运动的过程中,直线AG′与直线CF′是否存在平行或再次垂直的情形?如果存在,请画出图形,并求出t的值;否则,请说明理由.
精英家教网

查看答案和解析>>


同步练习册答案