题目列表(包括答案和解析)
(本题满分10分)如图,在△ABC中,∠C= 90°,以AB上一点O为圆心,
OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.
(1)若AC=6,AB= 10,求⊙O的半径;
(2)连接OE、ED、DF、EF.若四边形BDEF是平行四边形,试判断四边形OFDE的形状,并说明理由.
(本题满分10分)如图,在△ABC中,∠C= 90°,以AB上一点O为圆心,
OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.
(1)若AC=6,AB= 10,求⊙O的半径;
(2)连接OE、ED、DF、EF.若四边形BDEF是平行四边形,试判断四边形OFDE的形状,并说明理由.
(本题满分9分)如图,已知矩形ABCD中,BC=6,AB=8,延长AD到点E,使AE=15,连结BE交AC于点P.
1.(1)求AP的长;
2.(2)若以点A为圆心,AP为半径作⊙A,试判断线段BE与⊙A的位置关系并说明理由;
3.(3)已知以点A为圆心,r1为半径的动OA,使点D在动⊙A的内部,点B在动⊙A的外部.
①则动⊙A的半径r1的取值范围是 ▲ ;
②若以点C为圆心,r2为半径的动⊙C与动⊙A相切,则r2的取值范围是 ▲ .
(本题满分12分)有这样一道习题:已知:如图1,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重合),BP的延长线交⊙O于Q,R是OA的延长线上一点,且RP=RQ.说明:RQ为⊙O的切线. (无须证明)
请探究下列变化:
变化一:交换题设与结论.
如图1,已知OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重合),BP的延长线交⊙O于Q,过Q点作⊙O的切线交OA的延长线于R.说明:RP=RQ.(要证明)
变化二:运动探求.
(1)如图2,若OA向上平移,变化一中的结论还成立吗?(只需交待判断) 答:_________.
(2)如图3,如果P在OA的延长线上时,BP交⊙O于Q,过点Q作⊙O的切线交OA的延长线于R,变化一中的结论还成立吗?为什么? 来]
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com