五.请你解答下列各题 查看更多

 

题目列表(包括答案和解析)

阅读下列材料:1×2=
1
3
×(1×2×3-0×1×2),2×3=
1
3
×(2×3×4-1×2×3),3×4=
1
3
×(3×4×5-2×3×4),由以上三个等式相加,可得1×2+2×3+3×4=
1
3
×3×4×5=20.读完以上材料,请你计算下列各题:
(1)1×2+2×3+3×4+…+10×11(写出过程);
(2)1×2+2×3+3×4+…+n×(n+1)=
1
3
n(n+1)(n+2)
1
3
n(n+1)(n+2)

(3)1×2×3+2×3×4+3×4×5+…+7×8×9=
1260
1260

查看答案和解析>>

阅读下列材料:
1
1+
2
=
2
-1
(1+
2
)(
2
-1)
=
2
-1,
1
2
+
3
=
3
-
2
(
2
+
3
)(
3
-
2
)
=
3
-
2
1
3
+2
=
2-
3
(
3
+2)(2-
3
)
=2-
3
1
2+
5
=
5
-2
(2+
5
)(
5
-2)
=
5
-2.读完以上材料,请你计算下列各题:
(1)
1
3+
10
=
10
-3
10
-3

(2)
1
n
+
n+1
=
n+1
-
n
n+1
-
n

(3)
1
1+
2
+
1
2
+
3
+
1
3
+2
+…+
1
2010
+
2011
=
2011
-1
2011
-1

查看答案和解析>>

阅读下列材料:
12=
1
6
×1×2×3=1
; 
12+22=
1
6
×2×3×5=5

12+22+32=
1
6
×3×4×7=14

12+22+32+42=
1
6
×4×5×9=30


读完以上材料,请你计算下列各题:
(1)12+22+32+42+…+102(写出过程)
(2)12+22+32+42+…+n2=
1
6
n(n+1)(2n+1)
1
6
n(n+1)(2n+1)

(3)22+42+62+82+…+1002=
17170
17170

查看答案和解析>>

阅读下列材料:
1×2=
1
3
(1×2×3-0×1×2),
2×3=
1
3
(2×3×4-1×2×3),
3×4=
1
3
(3×4×5-2×3×4),
由以上三个等式相加,可得:
1×2+2×3+3×4=
1
3
×3×4×5=20.
读完以上材料,请你计算下列各题:
(1)1×2+2×3+3×4+…+10×11(写出过程);
(2)1×2+2×3+3×4+…+n×(n+1)=
 

(3)1×2×3+2×3×4+3×4×5+…+7×8×9=
 

查看答案和解析>>

阅读下列材料:
1×2 = ×(1×2×3-0×1×2),
2×3 = ×(2×3×4-1×2×3),
3×4 = ×(3×4×5-2×3×4),
由以上三个等式相加,可得
1×2+2×3+3×4 = ×3×4×5 = 20。
读完以上材料,请你计算下列各题:
(1)1×2+2×3+3×4+···+10×11(写出过程);
(2)1×2+2×3+3×4+···+n×(n+1) = _________;
(3)1×2×3+2×3×4+3×4×5+···+7×8×9 = _________。

查看答案和解析>>


同步练习册答案