2.到三角形各顶点的距离相等的点是三角形 A.三条角平分线的交点 B.三条高的交点 C.三边的垂直平分线的交点 D.三条中线的交点 查看更多

 

题目列表(包括答案和解析)

如图所示,已知等腰直角三角形ABC的腰长为acm,矩形DEFG的相邻两边分别与这个三角形的腰和斜边相等,如果将这两个图形组合成一个图形(要求有一条边重合,并且除此之外,再无公共部分).
(1)请分别画出各种不同的组合方式(可画示意图).
(2)△ABC的直角顶点A到矩形各顶点的距离中,共有几种不同的距离?哪种组合中的哪个距离最长,为什么?
精英家教网

查看答案和解析>>

如图,直线AB交x轴于点A(2,0),交抛物线y=ax2于点B(1,
3
),点C到△OAB精英家教网各顶点的距离相等,直线AC交y轴于点D.
(1)填空:a=
 
,△OAB是
 
三角形.
(2)连接BC与BD,求四边形OCBD的面积;
(3)当x>0时,在直线OC和抛物线y=ax2上是否分别存在点P和点Q,使四边形DOPQ为特殊的梯形?若存在,请直接写出点P的坐标;若不存在,说明理由.

查看答案和解析>>

如图,直线AB交x轴于点A(2,0),交抛物线y=ax2于点B(1,数学公式),点C到△OAB各顶点的距离相等,直线AC交y轴于点D.
(1)填空:a=______,△OAB是______三角形.
(2)连接BC与BD,求四边形OCBD的面积;
(3)当x>0时,在直线OC和抛物线y=ax2上是否分别存在点P和点Q,使四边形DOPQ为特殊的梯形?若存在,请直接写出点P的坐标;若不存在,说明理由.

查看答案和解析>>

(1)如图1,直线AB交x轴于点A(2,0),交抛物线y=ax2于点B(1,
3
),点C到△OAB各顶点的距离相等,直线AC交y轴于点D.当x>0时,在直线OC和抛物线y=ax2上是否分别存在点P和点Q,使四边形DOPQ为特殊的梯形?若存在,求点P、Q的坐标;若不存在,说明理由.
(2)在(1)题中,抛物线的解析式和点D的坐标不变(如图2).当x>0时,在直线y=kx(0<k<1)和这条抛物线上,是否分别存在点P和点Q,使四边形DOPQ为以OD为底的等腰梯形.若存在,求点P、Q的坐标;若不存在,说明理由.精英家教网

查看答案和解析>>

(1)如图1,直线AB交x轴于点A(2,0),交抛物线y=ax2于点B(1,数学公式),点C到△OAB各顶点的距离相等,直线AC交y轴于点D.当x>0时,在直线OC和抛物线y=ax2上是否分别存在点P和点Q,使四边形DOPQ为特殊的梯形?若存在,求点P、Q的坐标;若不存在,说明理由.
(2)在(1)题中,抛物线的解析式和点D的坐标不变(如图2).当x>0时,在直线y=kx(0<k<1)和这条抛物线上,是否分别存在点P和点Q,使四边形DOPQ为以OD为底的等腰梯形.若存在,求点P、Q的坐标;若不存在,说明理由.

查看答案和解析>>


同步练习册答案