14.函数y=取得最大值时.x= . 查看更多

 

题目列表(包括答案和解析)

在平面直角坐标系中,直线y=
2
3
3
kx+m(-
1
2
≤k≤
1
2
)经过点A(2
3
,4),且与y轴相交于点C.点B在y轴上,O为坐标原点,且OB=OA+7-2
7
.记△ABC的面积为S.
(1)求m的取值范围;
(2)求S关于m的函数关系式;
(3)设点B在y轴的正半轴上,当S取得最大值时,将△ABC沿AC折叠得到△AB′C,求点B′的坐标.

查看答案和解析>>

函数y=(x-2)(3-x)取得最大值时,x=
 

查看答案和解析>>

如图所示,在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)经过A(-1,0)、B(3,0)两点,抛物线与y轴交点为C,其顶点为D,连接BD,点P是线段BD上一个动点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接精英家教网BE.
(1)求抛物线的解析式,并写出顶点D的坐标;
(2)如果P点的坐标为(x,y),△PBE的面积为s,求s与x的函数关系式,写出自变量x的取值范围,并求出s的最大值;
(3)在(2)的条件下,当s取得最大值时,过点P作x的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为P',请直接写出P'点坐标,并判断点P'是否在该抛物线上.

查看答案和解析>>

精英家教网如图,△ABC是边长为1的等边三角形,P是AB边上的一个动点(P与B不重合),以线段CP为边作等边△CPD(D、A在BC的同侧),连接AD.
(1)判断四边形ABCD的形状,并给予证明;
(2)设BP=x,△PAD的面积为y,求出y关于x的函数关系式,并求出△PAD面积的最大值及取得最大值时x的值.

查看答案和解析>>

如图,已知抛物线y=-x2+bx+9-b2(b为常数)经过坐标原点O,且与x轴交于另一点E精英家教网.其顶点M在第一象限.
(1)求该抛物线所对应的函数关系式;
(2)设点A是该抛物线上位于x轴上方,且在其对称轴左侧的一个动点;过点A作x轴的平行线交该抛物线于另一点D,再作AB⊥x轴于点B,DE⊥x轴于点C.
①当线段AB、BC的长都是整数个单位长度时,求矩形ABCD的周长;
②求矩形ABCD的周长的最大值,并写出此时点A的坐标;
③当矩形ABCD的周长取得最大值时,它的面积是否也同时取得最大值?请判断并说明理由.

查看答案和解析>>


同步练习册答案