26.如图所示.在平面直角坐标系中.抛物线()经过..三点.其顶点为.连接.点是线段上一个动点(不与重合).过点作轴的垂线.垂足为.连接. 查看更多

 

题目列表(包括答案和解析)

精英家教网如图所示,在平面直角坐标系中,抛物线的顶点P到x轴的距离是4,抛物线与x轴相交于O,M两点,OM=4,矩形ABCD的边BC在线段OM上,点A,D在抛物线上.
(1)写出P,M两点的坐标,并求出抛物线的函数表达式;
(2)设矩形ABCD的周长为L,求L的最大值;
(3)当矩形ABCD的周长最大时,在抛物线的对称轴上是否存在点E,使得△DME的周长最小?如果存在,请写出E点坐标及△DME的周长最小值;如果不存在,请简要说明你的理由.

查看答案和解析>>

如图所示,在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)经过A(-1,0)、B(3,0)两点,抛物线与y轴交点为C,其顶点为D,连接BD,点P是线段BD上一个动点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接精英家教网BE.
(1)求抛物线的解析式,并写出顶点D的坐标;
(2)如果P点的坐标为(x,y),△PBE的面积为s,求s与x的函数关系式,写出自变量x的取值范围,并求出s的最大值;
(3)在(2)的条件下,当s取得最大值时,过点P作x的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为P',请直接写出P'点坐标,并判断点P'是否在该抛物线上.

查看答案和解析>>

23、如图所示,在平面直角坐标系中,抛物线的顶点P到x轴的距离是9,抛物线与x轴交于O、M两点,OM=6;矩形ABCD的边BC在线段OM上,点A、D在抛物线上.
(1)P点的坐标
(3,9)
、M点的坐标
(0,6)

(2)求抛物线的解析式;
(3)设矩形ABCD的周长为l,C(x,0),求l与x的关系式,并求l的最大值.

查看答案和解析>>

如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,3)三点,其顶点为D,连接BD,点P是线段BD上一个动点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接BE.
(1)求抛物线的解析式,并写出顶点D的坐标;
(2)如果P点的坐标为(x,y),△PBE的面积为s,求s与x的函数关系式,写出自变量x的取值范围,并求出s的最大值;
(3)在(2)的条件下,当s取得最大值时,过点P作x的垂线,垂足为F,连接EF,把△PE精英家教网F沿直线EF折叠,点P的对应点为P′,请直接写出P′点坐标,并判断点P′是否在该抛物线上.

查看答案和解析>>

如图所示,在平面直角坐标系中,抛物线的顶点P到x轴的距离是4,抛物线与x轴相交于O、M两点,OM=4;矩形ABCD的边BC 在线段OM上,点A、D在抛物线上.
(1)请写出P、M两点的坐标,并求这条抛物线的解析式.
(2)设矩形ABCD的周长为L
①当BC=2时,求矩形ABCD的周长;
②矩形ABCD的周长是否存在最大值?如果存在,请求出这个最大值.
(3)连接OP、PM,则△PMO为等腰三角形,请判断在抛物线上是否还存在点Q(除点M外),使得△OPQ也是等腰三角形?若有,请在图上用尺规作图方法作出.

查看答案和解析>>


同步练习册答案