A.当时. 查看更多

 

题目列表(包括答案和解析)

我国古代文献《周易》上记载了“八卦”的由来,当时的人们认为世界上的万事万物归根结底是由阴阳两种基本元素构成的,就把它们化成了两种卦爻,阳爻为“-”,阴爻为“--”.将阳爻和阴爻每次取三个,就会形成8种不同的排列方式,这与德国数学家莱布尼茨(1646-1716)创造的二进制竟不谋而合.下表就反映了“八卦”图符与二进制间的对应关系,根据表中的规律,从左到右的空格中应依次填写的数字是(  )

查看答案和解析>>

28、退休的钱老师去年用12000元购买了某种基金14775份.该基金上周末的价格是:每份0.63元,本周内与前一天相比的涨跌情况如下表(单位:元).

(1)本周内哪一天把该基金赎回比较合算?为什么?
(2)赎回时须交纳当时总市值0.5%的费用.如果钱老师在本周星期五收盘前将全部基金赎回,他的收益情况如何?

查看答案和解析>>

如图所示,在某海岛上的观察所A发现海上某船只B并测得其俯角α=8°14′,已知观察所A的标高(当水位为0m时的高度)为43.74m,当时水位为+2.63m,求观察所A到船只B的水平距离BC.(精确到1m)

查看答案和解析>>

(1997•重庆)如图,已知二次函数y=ax2-bx-c的图象与x轴交于A、B两点,当时x=1,二次函数取得最大值4,且|OA|=-
1n
+2,
(1)求二次函数的解析式.
(2)已知点P在二次函数的图象上,且有S△PAB=8,求点P的坐标.

查看答案和解析>>

数学学习总是如数学知识自身的生长历史一样,往往起源于猜测中的发现,我们所发现的不一定对,但是当利用我们已有的知识作为推理的前提论证之后,当所发现的在逻辑上没有矛盾之后,就可以作为新的推理的前提,数学中称之为定理.
(1)尝试证明:
等腰三角形的探索中借助折纸发现:直角三角形斜边上的中线等于斜边的一半.但是当时并未说明这个结论的合理.现在我们学些了矩形的判定和性质之后,就可以解决这个问题了.如图1若在Rt△ABC中CD是斜边AB的中线,则CD=
12
AB
,你能用矩形的性质说明这个结论吗?请说明.
(2)迁移运用:利用上述结论解决下列问题:
①如图2所示,四边形ABCD中,∠BAD=90°,∠DCB=90°,EF分别是BD、AC的中点,请你说明EF与AC的位置关系.
②如图3所示,?ABCD中,以AC为斜边作Rt△ACE,∠AEC=90°,且∠BED=90°,试说明平行四边形ABCD是矩形.

查看答案和解析>>


同步练习册答案