(1)求抛物线的解析式, 查看更多

 

题目列表(包括答案和解析)

(2012•房山区一模)如图(1),在平面直角坐标系中,O为坐标原点,抛物线y=ax2+8ax+16a+6经过点B(0,4).
(1)求抛物线的解析式;
(2)设抛物线的顶点为D,过点D、B作直线交x轴于点A,点C在抛物线的对称轴上,且C点的纵坐标为-4,连接BC、AC.求证:△ABC是等腰直角三角形;
(3)在(2)的条件下,将直线DB沿y轴向下平移,平移后的直线记为l,直线l 与x轴、y轴分别交于点A′、B′,是否存在直线l,使△A′B′C是直角三角形,若存在求出l的解析式,若不存在,请说明理由.

查看答案和解析>>

精英家教网如图所示,已知A点的坐标为(-1,0),点B的坐标是(9,0)以AB为直径作⊙O′,交y轴负半轴于点C,连接AC、BC,过A、B、C作抛物线
(1)求抛物线的解析式;
(2)点E是AC延长线上的一点,∠BCE的平分线CD交⊙O′于点D,连接BD求BD直线的解析式;
(3)在(2)的条件下,点P是直线BC下方的抛物线上一动点,当点P运动到什么位置时,△PCD的面积是△BCD面积的
13
,求此时点P的坐标.

查看答案和解析>>

如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-1,0)、B(3,0),与y轴交于点C(0,3).
(1)求抛物线的解析式及顶点D的坐标;
(2)若P为线段BD上的一个动点,点P的横坐标为m,试用含m的代数式表示点P的纵坐标;
(3)过点P作PM⊥x轴于点M,求四边形PMAC的面积的最大值和此时点P的坐标;
(4)若点F是第一象限抛物线上的一个动点,过点F作FQ∥AC交x轴于点Q.当点F的坐标为
(2,3)
(2,3)
时,四边形FQAC是平行四边形;当点F的坐标为
11
4
15
16
11
4
15
16
时,四边形FQAC是等腰梯形(直接写出结果,不写求解过程).

查看答案和解析>>

如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B两点(点A在点B左侧),与y轴交于点C.
(1)求抛物线的解析式及点A、B、C的坐标;
(2)直线AN交y轴于点F,P是抛物线的对称轴x=1上动点,H是X轴上一动点,请探索:是否存在这样的P、H,使四边形CFHP的周长最短?若存在,请求出四边形CFHP的最短周长和点P、H的坐标;若不存在,请说明理由;
(3)若点Q是∠MDB的角平分线上动点,点R是线段DB上的动点,Q、R在何位置时,BQ+QR的值最小.请直接写出BQ+QR的最小值和Q、R的坐标.

查看答案和解析>>

(2013•攀枝花)如图,抛物线y=ax2+bx+c经过点A(-3,0),B(1.0),C(0,-3).
(1)求抛物线的解析式;
(2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;
(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案