(2)点为线段上的一个动点.过作交于点.过作交折线于点.连结.设. 查看更多

 

题目列表(包括答案和解析)

如图,在平面直角坐标系中,抛物线经过,且

【小题1】求抛物线的解析式
【小题2】在抛物线上是否存在一点,使得是以为底边的等腰三角形?若存在,求出点的坐标,并判断这个等腰三角形是否为等腰直角三角形?若不存在,请说明理由;
【小题3】连接为线段上的一个动点(点不重合),过轴的垂线与这个二次函数的图象交于点,设线段的长为,点的横坐标为,求之间的函数关系式,并写出自变量的取值范围

查看答案和解析>>

(12分)如图,已知关于的一元二次函数)的图象与轴相交于两点(点在点的左侧),与轴交于点,且,顶点为

【小题1】⑴ 求出一元二次函数的关系式;
【小题2】⑵ 为线段上的一个动点,过点轴的垂线,垂足为.若的面积为,求关于的函数关系式,并写出的取值范围;
【小题3】⑶ 探索线段上是否存在点,使得为直角三角形,如果存在,求出的坐标;如果不存在,请说明理由.

查看答案和解析>>

如图,抛物线轴相交于两点(点在点的左侧),与轴相交于点,顶点为.

(1)直接写出三点的坐标和抛物线的对称轴;

(2)连接,与抛物线的对称轴交于点,点为线段上的一个动点,过点交抛物线于点,设点的横坐标为

①用含的代数式表示线段的长,并求出当为何值时,四边形为平行四边形?

②设的面积为,求的函数关系式

 

查看答案和解析>>

如图,已知关于的一元二次函数)的图象与轴相交于两点(点在点的左侧),与轴交于点,且,顶点为

(1)求出一元二次函数的关系式;

(2)点为线段上的一个动点,过点轴的垂线,垂足为.若 的面积为,求关于的函数关系式,并写出的取值范围;

(3)在(2)的条件下,当点坐标是            时, 为直角三角形.

 

查看答案和解析>>

如图,在平面直角坐标系中,抛物线经过,且

【小题1】求抛物线的解析式
【小题2】在抛物线上是否存在一点,使得是以为底边的等腰三角形?若存在,求出点的坐标,并判断这个等腰三角形是否为等腰直角三角形?若不存在,请说明理由;
【小题3】连接为线段上的一个动点(点不重合),过轴的垂线与这个二次函数的图象交于点,设线段的长为,点的横坐标为,求之间的函数关系式,并写出自变量的取值范围

查看答案和解析>>


同步练习册答案