(1)画出拼成的矩形的简图, 查看更多

 

题目列表(包括答案和解析)

如图是用硬纸板做成的四个全等的直角三角形,两精英家教网直角边长分别是a,b,斜边长为c和一个边长为c的正方形,请你将它们拼成一个能证明勾股定理的图形.
(1)画出拼成的这个图形的示意图.
(2)证明勾股定理.

查看答案和解析>>

33、用如图所示,大小完全相同的两个直角三角形纸片,若将它们的某条边重合,能拼成几种不同形状的平面图形?请你画出拼成的图形.

查看答案和解析>>

问题探究:
(1)如图1,在⊙O中,AB是直径,CD⊥AB于点E,AE=a,EB=b.计算CE的长度(用a、b的代数式表示).
(2)如图2,请你在边长分别为a、b(a>b)的矩形ABCD的边AD上找一点M,使得线段CM=
ab
(保留作图痕迹).
问题解决:
(3)请你在(2)中结论的基础上,在图3中对矩形ABCD进行拆分并拼接为一个与其面积相等的正方形.并探究你所画出拼成的正方形的面积是否存在最大值和最小值?若存在,求出这个最大值和最小值;若不存在,请说明理由.

查看答案和解析>>

25、一个长方形的长是宽的两倍.
(1)把这个长方形剪成两部分,使得它们能构成一个有两条边相等的三角形;
(2)把这个长方形剪成三部分,使得能用它们构成一个正方形.
请在下面图中画出剪切线,并在横线上画出拼成的新图形.

查看答案和解析>>

在梯形ABCD中,AD∥BC,AD=a,BC=b,AB=c.
操作示例
如图1,当∠B=∠A=90°,我们可以取直角梯形ABCD的非直角腰CD的中点P,过点P作PE∥AB,裁掉△PEC,并将△PEC拼接到△PFD的位置,构成新的图形(如图2).
思考发现
小明在操作后发现,该剪拼方法就是先将△PEC绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上.又因为在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,则∠FDP+∠ADP=180°,所以AD和DF在同一条直线上,那么构成的新图形是一个四边形,进而根据平行四边形的判定方法,可以判断出四边形ABEF是一个平行四边形,而且还是一个特殊的平行四边形--矩形.
实践探究
(1)矩形ABEF的面积是
 
;  (用含a,b,c的式子表示)
(2)类比图2的剪拼方法,请在如图3的梯形ABCD中画出剪拼成一个平行四边形的示意图;
(3)在如图4的多边形ABCDG中,AG=CD,AG∥CD,按上面的剪切方法沿一条直线进行剪切,拼成一个平行四边形,请画出拼成的平行四边形的示意图.
精英家教网

查看答案和解析>>


同步练习册答案