(温馨提示:在图1中.连结.取的中点.连结.根据三角形中位线定理.证明.从而.再利用平行线性质.可证得.) 查看更多

 

题目列表(包括答案和解析)

如图1,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,连结EF并延长,分别与BA、CD的延长线交于点M、N,则∠BME=∠CNE(不需证明)。
(温馨提示:在图1中,连结BD,取BD的中点H,连结HE、HF,根据三角形中位线定理,证明HE=HF,从而∠1=∠2,再利用平行线性质,可证得∠BME=∠CNE。)
(1)如图2,在四边形ADBC中,AB与CD相交于点O,AB=CD,E、F分别是BC、AD的中点,连结EF,分别交DC、AB于点M、N,判断△OMN的形状,请直接写出结论;
(2)如图3,在△ABC中,AC>AB,D点在AC上,AB=CD,E、F分别是BC、AD的中点,连结EF并延长,与BA的延长线交于点G,若∠EFC=60°,连结GD,判断△AGD的形状并证明。

查看答案和解析>>

如图,在四边形ABCD中,AB=CD,E.F分别是BC.AD的中点,连接EF并延长,分别与BA,CD的延长线交于点M,N,则∠BME=∠CNE(不必证明)
(温馨提示:在图(1)中,连接BD,取BD的中点H,连接HE.HF,根据三角形中位线定理,证明HE=HF,从而∠1=∠2,再利用平行线的性质,可证明∠BME=∠CNE)
(1)如图(2),在四边形ADBC中,AB与CD相交于点O,AB=CD,E.F分别是BC.AD的中点,连接EF,分别交CD.BA于点M.N,判断△OMN的形状,请直接写出结论.
(2)如图(3)中,在△ABC中,AC>AB,D点在AC上,AB=CD,E.F分别是BC.AD的中点,连接EF并延长,与BA的延长线交于点G,若∠EFC=60°,连接GD,判断△AGD形状并证明.
作业宝

查看答案和解析>>

如图1,在四边形中,分别是的中点,连结并延长,分别与的延长线交于点,则(不需证明).

(温馨提示:在图1中,连结,取的中点,连结,根据三角形中位线定理,证明,从而,再利用平行线性质,可证得.)

问题一:如图2,在四边形中,相交于点分别是的中点,连结,分别交于点,判断的形状,请直接写出结论.

问题二:如图3,在中,点在上,分别是的中点,连结并延长,与的延长线交于点,若,连结,判断的形状并证明.

 


查看答案和解析>>

如图1,在四边形中,分别是的中点,连结并延长,分别与的延长线交于点,则(不需证明).

(温馨提示:在图1中,连结,取的中点,连结,根据三角形中位线定理,证明,从而,再利用平行线性质,可证得.)

问题一:如图2,在四边形中,相交于点分别是的中点,连结,分别交于点,判断的形状,请直接写出结论.

问题二:如图3,在中,点在上,分别是的中点,连结并延长,与的延长线交于点,若,连结,判断的形状并证明.

查看答案和解析>>

如图1,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,分别与BA、CD的延长线交于点M、N,则∠BME=∠CNE(不需证明).
(温馨提示:在图1中,连接BD,取BD的中点H,连接HE、HF,根据三角形中位线定理,证明HE=HF,从而∠1=∠2,再利用平行线性质,可证得∠BME=∠CNE.)
问题一:如图2,在四边形ADBC中,AB与CD相交于点O,AB=CD,E、F分别是BC、AD的中点,连接EF,分别交DC、AB于点M、N,判断△OMN的形状,请直接写出结论;
问题二:如图3,在△ABC中,AC>AB,D点在AC上,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,与BA的延长线交于点G,若∠EFC=60°,连接GD,判断△AGD的形状并证明.
精英家教网

查看答案和解析>>


同步练习册答案