问题二:如图3.在中..点在上..分别是的中点.连结并延长.与的延长线交于点.若.连结.判断的形状并证明. 查看更多

 

题目列表(包括答案和解析)

22、如图,某灌溉设备的喷头B高出地面1.25m,喷出的抛物线形水流在与喷头底部A的距离为1m处达到距地面最大高度2.25m.试在恰当的直角坐标系中求出与该抛物线水流对应的二次函数关系式.
小明在解答下图所示的问题时,写下了如下解答过程:

①以水流的最高点为原点,过原点的水平线为横轴,过原点的铅垂线为纵轴建立如图所示的平面直角坐标系;
②设抛物线的解析式为y=ax2
③则B点的坐标为(-1,-1);
④代入y=ax2,得-1=a•1,所以a=-1
⑤所以y=-x2
问:(1)小明的解答过程是否正确,若不正确,请你加以改正;
(2)喷出的水流能否浇灌到地面上距离A点3.5m的庄稼上(图上庄稼在A点的右侧,庄稼的高度不计),若不能请你在上图所示的坐标系中将喷头B上下或左右平移,问至少要平移多少距离才能浇灌到地面的庄稼,并求出此时喷出的抛物线形水流的函数解析式.

查看答案和解析>>

如图,某灌溉设备的喷头B高出地面1.25m,喷出的抛物线形水流在与喷头底部A的距离为1m处达到距地面最大高度2.25m.试在恰当的直角坐标系中求出与该抛物线水流对应的二次函数关系式.
小明在解答下图所示的问题时,写下了如下解答过程:

①以水流的最高点为原点,过原点的水平线为横轴,过原点的铅垂线为纵轴建立如图所示的平面直角坐标系;
②设抛物线的解析式为y=ax2
③则B点的坐标为(-1,-1);
④代入y=ax2,得-1=a•1,所以a=-1
⑤所以y=-x2
问:(1)小明的解答过程是否正确,若不正确,请你加以改正;
(2)喷出的水流能否浇灌到地面上距离A点3.5m的庄稼上(图上庄稼在A点的右侧,庄稼的高度不计),若不能请你在上图所示的坐标系中将喷头B上下或左右平移,问至少要平移多少距离才能浇灌到地面的庄稼,并求出此时喷出的抛物线形水流的函数解析式.

查看答案和解析>>

如图,某灌溉设备的喷头B高出地面1.25m,喷出的抛物线形水流在与喷头底部A的距离为1m处达到距地面最大高度2.25m.试在恰当的直角坐标系中求出与该抛物线水流对应的二次函数关系式.
小明在解答下图所示的问题时,写下了如下解答过程:

①以水流的最高点为原点,过原点的水平线为横轴,过原点的铅垂线为纵轴建立如图所示的平面直角坐标系;
②设抛物线的解析式为y=ax2
③则B点的坐标为(-1,-1);
④代入y=ax2,得-1=a•1,所以a=-1
⑤所以y=-x2
问:(1)小明的解答过程是否正确,若不正确,请你加以改正;
(2)喷出的水流能否浇灌到地面上距离A点3.5m的庄稼上(图上庄稼在A点的右侧,庄稼的高度不计),若不能请你在上图所示的坐标系中将喷头B上下或左右平移,问至少要平移多少距离才能浇灌到地面的庄稼,并求出此时喷出的抛物线形水流的函数解析式.

查看答案和解析>>

如图,某灌溉设备的喷头B高出地面1.25m,喷出的抛物线形水流在与喷头底部A的距离为1m处达到距地面最大高度2.25m.试在恰当的直角坐标系中求出与该抛物线水流对应的二次函数关系式.
小明在解答下图所示的问题时,写下了如下解答过程:

①以水流的最高点为原点,过原点的水平线为横轴,过原点的铅垂线为纵轴建立如图所示的平面直角坐标系;
②设抛物线的解析式为y=ax2
③则B点的坐标为(-1,-1);
④代入y=ax2,得-1=a•1,所以a=-1
⑤所以y=-x2
问:(1)小明的解答过程是否正确,若不正确,请你加以改正;
(2)喷出的水流能否浇灌到地面上距离A点3.5m的庄稼上(图上庄稼在A点的右侧,庄稼的高度不计),若不能请你在上图所示的坐标系中将喷头B上下或左右平移,问至少要平移多少距离才能浇灌到地面的庄稼,并求出此时喷出的抛物线形水流的函数解析式.

查看答案和解析>>

如图,点A在反比例函数的图象在第二象限内的分支上,AB⊥x轴于点B,O是原点,且△AOB的面积为1.

试解答下列问题:

(1)比例系数k=________;

(2)在给定直角坐标系中,画出这个函数图象的另一个分支;

(3)当x>1时,写出y的取值范围.

查看答案和解析>>


同步练习册答案