(2)设点的运动时间为秒.的面积为.求出与之间的函数关系式, 查看更多

 

题目列表(包括答案和解析)

如图,平面直角坐标系中,O为坐标原点,抛物线y=ax2-2ax+b经过A(-2,0),C(2,8)两点,与y轴交于点D,与x轴交于另一点B.点E坐标为(0,-2),点P是线段BO上的一个动点,从点B开始以1个单位每秒的速度沿BO向终点O运动;

(1)求此抛物线的解析式;
(2)设运动时间为t秒,直线PE扫过四边形ABCD的面积为S,求S关于t的函数关系式;
(3)能否将△OEB绕平面内某点旋转90°后使得△OEB的两个顶点落在抛物线上?若能,请直接写出旋转中心的坐标;若不能,请说明理由.

查看答案和解析>>

如图,平面直角坐标系中,O为坐标原点,抛物线y=ax2-2ax+b经过A(-2,0),C(2,8)两点,与y轴交于点D,与x轴交于另一点B.点E坐标为(0,-2),点P是线段BO上的一个动点,从点B开始以1个单位每秒的速度沿BO向终点O运动;

(1)求此抛物线的解析式;
(2)设运动时间为t秒,直线PE扫过四边形ABCD的面积为S,求S关于t的函数关系式;
(3)能否将△OEB绕平面内某点旋转90°后使得△OEB的两个顶点落在抛物线上?若能,请直接写出旋转中心的坐标;若不能,请说明理由.

查看答案和解析>>

如图,平面直角坐标系中,O为坐标原点,抛物线y=ax2-2ax+b经过A(-2,0),C(2,8)两点,与y轴交于点D,与x轴交于另一点B.点E坐标为(0,-2),点P是线段BO上的一个动点,从点B开始以1个单位每秒的速度沿BO向终点O运动;

(1)求此抛物线的解析式;
(2)设运动时间为t秒,直线PE扫过四边形ABCD的面积为S,求S关于t的函数关系式;
(3)能否将△OEB绕平面内某点旋转90°后使得△OEB的两个顶点落在抛物线上?若能,请直接写出旋转中心的坐标;若不能,请说明理由.

查看答案和解析>>

如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA<OB)且OA、OB的长分别是一元二次方程的两个根,点C在x轴负半轴上,

且AB:AC=1:2

(1)求A、C两点的坐标;

(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;

(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以 A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.

 

查看答案和解析>>

如图,平面直角坐标系中,直线y=-数学公式x+8分别交x轴、y轴于点B、点A,点D从点A出发沿射线AB方向以每秒1个单位长的速度匀速运动,同时点E从点B出发沿射线BC方向以每秒数学公式个单位长的速度匀速运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥AO于点F,连接DE、EF
(1)当t为何值时,△BDE与△BAO相似;
(2)写出以点D、F、E、O为顶点的四边形面积s与运动时间t之间的函数关系;
(3)是否存在这样一个时刻,此时以点D、F、E、B为顶点的四边形是菱形?如果存在,求出相应的t的值;如果不存在,请说明理由.

查看答案和解析>>


同步练习册答案