题目列表(包括答案和解析)
如图,直线,连结,直线及线段把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点落在某个部分时,连结,构成,,三个角.(提示:有公共端点的两条重合的射线所组成的角是角.)
(1)当动点落在第①部分时,求证:;
(2)当动点落在第②部分时,是否成立(直接回答成立或不成立)?
(3)当动点在第③部分时,全面探究,,之间的关系,并写出动点的具体位置和相应的结论.选择其中一种结论加以证明.
如图,直线AC∥BD,连结AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连结PA、PB,构成∠PAC、∠APB、∠PBD三个角. (提示:有公共端点的两条重合的射线所组成的角是0°)
1.当动点P落在第①部分时,有∠APB=∠PAC+∠PBD,请说明理由;
2.当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立(直接回答成立或不成立)?
3.当动点P在第③部分时,探究∠PAC、∠APB、∠PBD之间的关系,直接写出你发现的结论.
如图,直线AC∥BD,连结AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连结PA、PB,构成∠PAC、∠APB、∠PBD三个角. (提示:有公共端点的两条重合的射线所组成的角是0°)
【小题1】当动点P落在第①部分时,有∠APB=∠PAC+∠PBD,请说明理由;
【小题2】当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立(直接回答成立或不成立)?
【小题3】当动点P在第③部分时,探究∠PAC、∠APB、∠PBD之间的关系,直接写出你发现的结论.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com