①△DFE是等腰直角三角形,②四边形CDFE不可能为正方形,③DE长度的最小值为4,④四边形CDFE的面积保持不变,⑤△CDE面积的最大值为8.其中正确的结论是A.①②③ B.①④⑤ C.①③④ D.③④⑤ 查看更多

 

题目列表(包括答案和解析)

如图,在等腰直角三角形ABC中,∠C=90°,AC=8,点F是AB边上的中点,点D,E分别在AC,BC边上运动,且保持AD=CD.连结DE,DF,EF. 在此运动变化的过程中,下列结论:

①△DFE是等腰直角三角形;
②四边形CDFE不可能为正方形;
③DE长度的最小值为4;
④四边形CDFE的面积保持不变;
⑤△CDE面积的最大值为8.
其中正确的结论是_____________.

查看答案和解析>>

如图,在等腰直角三角形ABC中,∠C=90°,AC=8,点F是AB边上的中点,点D,E分别在AC,BC边上运动,且保持AD=CD.连结DE,DF,EF. 在此运动变化的过程中,下列结论:

①△DFE是等腰直角三角形;
②四边形CDFE不可能为正方形;
③DE长度的最小值为4;
④四边形CDFE的面积保持不变;
⑤△CDE面积的最大值为8.
其中正确的结论是_____________.

查看答案和解析>>

如图,在等腰直角三角形ABC中,∠C=90°,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE,连接DE、DF、EF,在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②四边形CDFE不可能为正方形;③DE长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8,其中正确的结论是
[     ]
A.①②③
B.①④⑤
C.①③④
D.③④⑤

查看答案和解析>>

如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D、E分别在AC、BC边精英家教网上运动,且保持AD=CE.连接DE、DF、EF.
①求证:△DFE是等腰直角三角形;
②在此运动变化的过程中,四边形CDFE的面积是否保持不变?试说明理由.
③求△CDE面积的最大值.

查看答案和解析>>

如图,在等腰中,,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持.连接DE、DF、EF.在此运动变化过程中,下列结论:

①△DFE是等腰直角三角形;     ②△CDE与△DAF不可能全等;

③四边形CDFE的面积保持不变;④△CDE面积的最大值为8.

其中正确的结论是          .(填序号,多选漏选均不给分)

 

查看答案和解析>>


同步练习册答案