6.如图.将△ABC绕点A逆时针旋转80°得到△AB’C’.若∠BAC=50°.则∠CAB’的度数为 查看更多

 

题目列表(包括答案和解析)

如图①,已知△ABC和△ACD是两个全等的等边三角形,用它们拼成四边形ABCD.
(1)四边形ABCD是什么特殊的四边形,说明理由;
(2)分别延长△ABC的边AB,AC到M,N,使AM=AN,连接MN得到△AMN,再将△AMN绕点A按逆时针方向旋转40°,其边与四边形ABCD的两边BC,CD分别相交于点E,F,请你探索线段BE与CF之间的数量关系,并说明理由;
(3)按(2)的操作,若将△AMN绕点A按逆时针方向旋转α角(60°<α<80°),其边与四边形ABCD的两边BC,CD的延长线分别相交于点E,F,在图②中画出图形,判断此时(2)中的结论是否成立,并说明理由.

查看答案和解析>>

如图①,已知△ABC和△ACD是两个全等的等边三角形,用它们拼成四边形ABCD.
(1)四边形ABCD是什么特殊的四边形,说明理由;
(2)分别延长△ABC的边AB,AC到M,N,使AM=AN,连接MN得到△AMN,再将△AMN绕点A按逆时针方向旋转40°,其边与四边形ABCD的两边BC,CD分别相交于点E,F,请你探索线段BE与CF之间的数量关系,并说明理由;
(3)按(2)的操作,若将△AMN绕点A按逆时针方向旋转α角(60°<α<80°),其边与四边形ABCD的两边BC,CD的延长线分别相交于点E,F,在图②中画出图形,判断此时(2)中的结论是否成立,并说明理由.

查看答案和解析>>

如图①,已知△ABC和△ACD是两个全等的等边三角形,用它们拼成四边形ABCD.
(1)四边形ABCD是什么特殊的四边形,说明理由;
(2)分别延长△ABC的边AB,AC到M,N,使AM=AN,连接MN得到△AMN,再将△AMN绕点A按逆时针方向旋转40°,其边与四边形ABCD的两边BC,CD分别相交于点E,F,请你探索线段BE与CF之间的数量关系,并说明理由;
(3)按(2)的操作,若将△AMN绕点A按逆时针方向旋转α角(60°<α<80°),其边与四边形ABCD的两边BC,CD的延长线分别相交于点E,F,在图②中画出图形,判断此时(2)中的结论是否成立,并说明理由.

精英家教网

查看答案和解析>>

6、如图,将△ABC绕点A逆时针旋转80°得到△AB′C′.若∠BAC=50°,则∠CAB′的度数为(  )

查看答案和解析>>

13、如图,将△ABC绕点A逆时针旋转80°得到△ADE,连接BD,则∠ADB=
50
度.

查看答案和解析>>


同步练习册答案