23.如图.抛物线与轴正半轴交于点A(3.0).以OA为边在轴上方作正方形OABC.延长CB交抛物线于点D.再以BD为边向上作方形BDEF. 查看更多

 

题目列表(包括答案和解析)

如图,抛物线轴正半轴交于两点,且
(1)求m的值;
(2)抛物线上另有一点C在第一象限,设BC的延长线交y轴于P。如果点C是BP的中点,求点C 坐标;
(3)在(2)的条件下,求证:△OCA∽△OBC。

查看答案和解析>>

如图,抛物线轴相交于点(﹣1,0)、(3,0),与轴相交于点,点为线段上的动点(不与重合),过点垂直于轴的直线与抛物线及线段分别交于点,点轴正半轴上,=2,连接

(1)求抛物线的解析式;

(2)当四边形是平行四边形时,求点的坐标;

(3)过点的直线将(2)中的平行四边形分成面积相等的两部分,求这条直线的解析式.(不必说明平分平行四边形面积的理由)

 

查看答案和解析>>

如图,抛物线轴相交于点(﹣1,0)、(3,0),与轴相交于点,点为线段上的动点(不与重合),过点垂直于轴的直线与抛物线及线段分别交于点,点轴正半轴上,=2,连接

(1)求抛物线的解析式;
(2)当四边形是平行四边形时,求点的坐标;
(3)过点的直线将(2)中的平行四边形分成面积相等的两部分,求这条直线的解析式.(不必说明平分平行四边形面积的理由)

查看答案和解析>>

如图,抛物线轴相交于点(﹣1,0)、(3,0),与轴相交于点,点为线段上的动点(不与重合),过点垂直于轴的直线与抛物线及线段分别交于点,点轴正半轴上,=2,连接

(1)求抛物线的解析式;
(2)当四边形是平行四边形时,求点的坐标;
(3)过点的直线将(2)中的平行四边形分成面积相等的两部分,求这条直线的解析式.(不必说明平分平行四边形面积的理由)

查看答案和解析>>

如图,抛物线轴交于两点,与轴正半轴交于点,且,0),
(1)求出抛物线的解析式;
(2)如图①,作矩形,使过点,点边上的一动点,连接,作于点,设线段的长为,线段的长为,当点运动时,求的函数关系式并写出自变量的取值范围,在同一直角坐标系中,该函数的图象与图①的抛物线中≥0的部分有何关系?
(3)如图②,在图①的抛物线中,点为其顶点,为抛物线上一动点(不与重合),取点,0),作(点按逆时针顺序),当点在抛物线上运动时,直线是否存在某种位置关系?若存在,写出并证明你的结论;若不存在,请说明理由。

查看答案和解析>>


同步练习册答案