题目列表(包括答案和解析)
已知函数其中a>0.
(I)求函数f(x)的单调区间;
(II)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围;
(III)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t),记g(t)=M(t)-m(t),求函数g(t)在区间[-3,-1]上的最小值。
【考点定位】本小题主要考查导数的运算,利用导数研究函数的单调性、函数的零点,函数的最值等基础知识.考查函数思想、分类讨论思想.考查综合分析和解决问题的能力.
求数列的前项和.
【解题思路】根据通项公式,通过观察、分析、研究,可以分解通项公式中的对应项,达到求和的目的.
已知椭圆(a>b>0),点在椭圆上。
(I)求椭圆的离心率。
(II)设A为椭圆的右顶点,O为坐标原点,若Q在椭圆上且满足|AQ|=|AO|,求直线OQ的斜率的值。
【考点定位】本小题主要考查椭圆的标准方程和几何性质、直线的方程、平面内两点间距离公式等基础知识. 考查用代数方法研究圆锥曲线的性质,以及数形结合的数学思想方法.考查运算求解能力、综合分析和解决问题的能力.
(本小题满分10分)
中,为边上的一点,,,,求.
【命题意图】本试题主要考查同角三角函数关系、两角和差公式和正弦定理在解三角形中的应用,考查考生对基础知识、基本技能的掌握情况.
已知集合M={1,2,3,4},N={-2,2},下列结论成立的是
A.NM B.M∪N=M C.M∩N=N D.M∩N={2}
【解析】显然A,B,C错,D正确;
一、选择题(本大题共8小题,每小题5分,共40分)
1.D 2.A 3.B 4.D 5.B 6.C 7.C 8.B
二、填空题(本大题共6小题,每小题5分,共30分)
9. 10. 11.5 10 12.
13.② 14.
三、解答题(本大题共6小题,共80分)
15.(共13分)
解:(Ⅰ)
.
因为函数的最小正周期为,且,
所以,解得.
(Ⅱ)由(Ⅰ)得.
因为,
所以,
所以,
因此,即的取值范围为.
16.(共14分)
解法一:
(Ⅰ)取中点,连结.
,
.
,
.
,
平面.
平面,
.
(Ⅱ),,
.
又,
.
又,即,且,
平面.
取中点.连结.
,.
是在平面内的射影,
.
是二面角的平面角.
在中,,,,
.
二面角的大小为.
(Ⅲ)由(Ⅰ)知平面,
平面平面.
过作,垂足为.
平面平面,
平面.
的长即为点到平面的距离.
由(Ⅰ)知,又,且,
平面.
平面,
.
在中,,,
.
.
点到平面的距离为.
解法二:
(Ⅰ),,
.
又,
.
,
平面.
平面,
.
(Ⅱ)如图,以为原点建立空间直角坐标系.
则.
设.
,
,.
取中点,连结.
,,
,.
是二面角的平面角.
,,,
.
二面角的大小为.
(Ⅲ),
在平面内的射影为正的中心,且的长为点到平面的距离.
如(Ⅱ)建立空间直角坐标系.
,
点的坐标为.
.
点到平面的距离为.
17.(共13分)
解:(Ⅰ)记甲、乙两人同时参加岗位服务为事件,那么,
即甲、乙两人同时参加岗位服务的概率是.
(Ⅱ)记甲、乙两人同时参加同一岗位服务为事件,那么,
所以,甲、乙两人不在同一岗位服务的概率是.
(Ⅲ)随机变量可能取的值为1,2.事件“”是指有两人同时参加岗位服务,
则.
所以,的分布列是
1
3
18.(共13分)
解:
.
令,得.
当,即时,的变化情况如下表:
0
当,即时,的变化情况如下表:
0
所以,当时,函数在上单调递减,在上单调递增,
在上单调递减.
当时,函数在上单调递减,在上单调递增,在上单调递减.
当,即时,,所以函数在上单调递减,在上单调递减.
19.(共14分)
解:(Ⅰ)由题意得直线的方程为.
因为四边形为菱形,所以.
于是可设直线的方程为.
由得.
因为在椭圆上,
所以,解得.
设两点坐标分别为,
则,,,.
所以.
所以的中点坐标为.
由四边形为菱形可知,点在直线上,
所以,解得.
所以直线的方程为,即.
(Ⅱ)因为四边形为菱形,且,
所以.
所以菱形的面积.
由(Ⅰ)可得,
所以.
所以当时,菱形的面积取得最大值.
20.(共13分)
(Ⅰ)解:,
,
;
,
.
(Ⅱ)证明:设每项均是正整数的有穷数列为,
则为,,,,,
从而
.
又,
所以
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com