3.若在平面直角坐标系中.点P的坐标是.则点P在A.第一象限 B.第二象限 C.第三象限 D.第四象限 查看更多

 

题目列表(包括答案和解析)

在平面直角坐标系中,点A坐标为(1,1),过点A作AB⊥x轴,垂足为点B,△AOB绕点O逆时针方向旋转90°,得到△MON(如图所示),若二次函数的图象经过点A、M、O三点.
(1)求这个二次函数的解析式;
(2)如果把这个二次函数图象向右平移2个单位,得到新的二次函数图象与y轴的交点为C,求tan∠ACO的值;
(3)在(2)的条件下,设新的二次函数图象的对称轴与x轴的交点为D,点E在这条对称精英家教网轴上,如果△BCO与以点B、D、E所组成的三角形相似(相似比不为1),求点E的坐标.

查看答案和解析>>

在平面直角坐标系中,点A坐标为(1,1),过点A作AB⊥x轴,垂足为点B,△AOB绕点O逆时针方向旋转90°,得到△MON(如图所示),若二次函数的图象经过点A、M、O三点.
(1)求这个二次函数的解析式;
(2)如果把这个二次函数图象向右平移2个单位,得到新的二次函数图象与y轴的交点为C,求tan∠ACO的值;
(3)在(2)的条件下,设新的二次函数图象的对称轴与x轴的交点为D,点E在这条对称轴上,如果△BCO与以点B、D、E所组成的三角形相似(相似比不为1),求点E的坐标.

查看答案和解析>>

在平面直角坐标系中,点A坐标为(1,1),过点A作AB⊥x轴,垂足为点B,△AOB绕点O逆时针方向旋转90°,得到△MON(如图所示),若二次函数的图象经过点A、M、O三点.
(1)求这个二次函数的解析式;
(2)如果把这个二次函数图象向右平移2个单位,得到新的二次函数图象与y轴的交点为C,求tan∠ACO的值;
(3)在(2)的条件下,设新的二次函数图象的对称轴与x轴的交点为D,点E在这条对称轴上,如果△BCO与以点B、D、E所组成的三角形相似(相似比不为1),求点E的坐标.

查看答案和解析>>

在平面直角坐标系中,点A、B的坐标分别为(10,0),(2,4).
(1)若点C是点B关于x轴的对称点,求经过O、C、A三点的抛物线的解析式;
(2)若P为抛物线上异于C的点,且△OAP是直角三角形,请直接写出点P的坐标;
(3)若抛物线顶点为D,对称轴交x轴于点M,探究:抛物线对称轴上是否存在异于D的点Q,使△AQD是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

精英家教网在平面直角坐标系中,点O为坐标原点,点A的坐标为(3,4),点B的坐标为(7,0),D,E分别是线段AO,AB上的点,以DE所在直线为对称轴,把△ADE作轴对称变换得△A′DE,点A′恰好在x轴上,若△OA′D与△OAB相似,则OA′的长为
 
.(结果保留2个有效数字)

查看答案和解析>>


同步练习册答案