(3)设 查看更多

 

题目列表(包括答案和解析)

f(x)=
-2x-1,x≥0
-2x+6,x<0
,若f(t)>2,则实数t的取值范围是
 

查看答案和解析>>

设方程2x+x=4的根为x0,若x0∈(k-
1
2
,k+
1
2
),则整数k=
 

查看答案和解析>>

设f(x)=log
1
2
(
1-ax
x-1
)
为奇函数,a为常数,
(Ⅰ)求a的值;
(Ⅱ)证明:f(x)在(1,+∞)内单调递增;
(Ⅲ)若对于[3,4]上的每一个x的值,不等式f(x)>(
1
2
)x
+m恒成立,求实数m的取值范围.

查看答案和解析>>

设集合A={(x,y)|
x2
4
+
y2
16
=1}
,B={(x,y)|y=3x},则A∩B的子集的个数是(  )
A、4B、3C、2D、1

查看答案和解析>>

8、设集合M={1,2,4,8},N={x|x是2的倍数},则M∩N=(  )

查看答案和解析>>

19.解:(1)连接B1D1,ABCD―A1B1C1D1为四棱柱,

则在四边形BB1D1D中(如图),

得△D1O1B1≌△B1BO,可得∠D1O1B1=∠OBB1=90°,

即D1O1⊥B1O

   (2)解法一:连接OD1,△AB1C,△AD1C均为等腰

三角形,

且AB1=CB,AD1=CD1,所有OD1⊥AC,B1O⊥AC,

显然:∠D1OB1为所求二面角D1―AC―B1的平面角,

由:OD1=OB1=B1D=2知

解法二:由ABCD―A1B1C1D1为四棱柱,得面BB1D1D⊥面ABCD

所以O1D1在平面ABCD上的射影为BD,由四边形ABCD为正方形,AC⊥BD,由三垂线定理知,O1D1⊥AC。可得D1O1⊥平面AB1C

又因为B1O⊥AC,所以∠D1OB1所求二面角D1―AC―B1的平面角,

20.解:(1)曲线C上任意一点M到点F(0,1)的距离比它到直线的距离小1,

可得|MF|等于M到y=-1的距离,由抛物线的定义知,M点的轨迹为

   (2)当直线的斜率不存在时,它与曲线C只有一个交点,不合题意,

    当直线m与x轴不垂直时,设直线m的方程为

   代入    ①

    恒成立,

    设交点A,B的坐标分别为

∴直线m与曲线C恒有两个不同交点。

    ②        ③

故直线m的方程为

21.解:(1)由已知得

   

   (2)

   

   

   (3)

   

 


同步练习册答案