(1)求圆心M的坐标,(2)求经过A.B.C.三点的抛物线的解析式, (3)点D是AB所对的优弧上的一动点.求四边形ACBD的最大面积. 查看更多

 

题目列表(包括答案和解析)

以原点为圆心,1cm为半径的圆分别交x、y轴的正半轴于A、B两点,点P的坐标为(2,0).
(1)如图1,动点Q从点B处出发,沿圆周按顺时针方向匀速运动一周,设经过的时间为t秒,当t=1时,直线PQ恰好与⊙O第一次相切,连接OQ.求此时点Q的运动速度(结果保留);
(2)若点Q按照(1)中的方向和速度继续运动,
①当t为何值时,以O、P、Q为顶点的三角形是直角三角形;
②在①的条件下,如果直线PQ与⊙O相交,请求出直线PQ被⊙O所截的弦长.

查看答案和解析>>

精英家教网在平面直角坐标系中,抛物线经过O(0,0)、A(4,0)、E(3,-
2
3
3
)三点.
(1)求此抛物线的解析式;
(2)以OA的中点M为圆心,OM长为半径作⊙M,在(1)中的抛物线上是否存在这样的点P,过点P作⊙M的切线l,且l与x轴的夹角为30°?若存在,请求出此时点P的坐标;若不存在,请说明理由.(注意:本题中的结果可保留根号).

查看答案和解析>>

在平面直角坐标系中,以点P(3,0)为圆心,以6为半径的圆与y轴的正半轴相交于点C,精英家教网与x轴分别交于A、B两点.
(1)试确定经过A、B、C三点的抛物线的解析式;
(2)在BC上确定一点D,使BD:CD=AB:AC,并给出证明;
(3)设AD交y轴于E,过E作EF∥AB,交BC于F.求证:2EF=AB;
(4)延长AD交⊙P于点G,求证:△CDG≌△EDF.

查看答案和解析>>

在平面直角坐标系中(单位长度:1cm),A、B两点的坐标分别为(-4,0),(2,0),点P从点A开始以2cm/s的速度沿折线AOy运动,同时点Q从点B开始以1cm/s的速度沿折线BOy运动.
(1)在运动开始后的每一时刻一定存在以点A、O、P为顶点的三角形和以点B、O、Q为顶点的三角形吗?如果存在,那么以点A、O、P为顶点的三角形和以点B、O、Q为顶点的三角形相似吗?以点A、O、P为顶点的三角形和以点B、O、Q为顶点的三角形会同时成为等腰直角三角形吗?请分别说明理由.
(2)试判断t=(2+4
2
)s
时,以点A为圆心,AP为半径的圆与以点B为圆心、BQ半径的圆的位置关系;除此之外⊙A与⊙B还有其他位置关系吗?如果有,请求出t的取值范围.
(3)请你选定某一时刻,求出经过三点A、B、P的抛物线的解析式.

查看答案和解析>>

在平面直角坐标系中,以点P(3,0)为圆心,以6为半径的圆与y轴的正半轴相交于点C,与x轴分别交于A、B两点.
(1)试确定经过A、B、C三点的抛物线的解析式;
(2)在BC上确定一点D,使BD:CD=AB:AC,并给出证明;
(3)设AD交y轴于E,过E作EF∥AB,交BC于F.求证:2EF=AB;
(4)延长AD交⊙P于点G,求证:△CDG≌△EDF.

查看答案和解析>>


同步练习册答案