(1)求点B的坐标,(2)求抛物线的解析式,(3)在抛物线上是否还存在点P.使△ACP仍然是以AC为直角边的等腰直角三角形?若存在.求所有点P的坐标,若不存在.请说明理由. 查看更多

 

题目列表(包括答案和解析)

抛物线的解析式y=ax2+bx+c满足如下四个条件:abc=0;a+b+c=3;ab+bc+ca=-3;a<b<c
(1)求这条抛物线的解析式;
(2)设该抛物线与x轴的两个交点分别为A、B(A在B的左边),与y轴的交点为C.
①在第一象限内,这条抛物线上有一点P,AP交y轴于点D,当OD=1.5时,试比较S△APC与S△AOC的大小.
②在x轴的上方,这条抛物线上是否存在点Pn,使得S△APnC=S△AOC?若存在,请求出点Pn的坐标;若不存在,请说明理由.
精英家教网精英家教网

查看答案和解析>>

抛物线的解析式y=ax2+bx+c满足如下四个条件:abc=0;a+b+c=3;ab+bc+ca=-3;a<b<c
(1)求这条抛物线的解析式;
(2)设该抛物线与x轴的两个交点分别为A、B(A在B的左边),与y轴的交点为C.
①在第一象限内,这条抛物线上有一点P,AP交y轴于点D,当OD=1.5时,试比较S△APC与S△AOC的大小.
②在x轴的上方,这条抛物线上是否存在点Pn,使得S△APnC=S△AOC?若存在,请求出点Pn的坐标;若不存在,请说明理由.

查看答案和解析>>

 (1)求抛物线的解析式,并求出顶点A的坐标.

(2) 连结AB,平移AB所在的直线,使其经过原点O,得到直线.点上一动点,当△的周长最小时,求点P的坐标.

(3)当△的周长最小时,在直线AB的上方是否存在一点Q,使以A,B,Q为顶点的三角形与△POB相似,若存在,直接写出点Q的坐标;若不存在,说明理由.(规定:点Q的对应顶点不为点O

 

查看答案和解析>>

当抛物线的解析式中含有字母系数时,随着系数中字母取值的不同,抛物线的顶点坐标也将发生变化.例如:由抛物线y=x2-2mx+m2+2m-1…(1)
得:y=(x-m)2+2m-1…(2)
∴抛物线的顶点坐标为(m,2m-1),设顶点为P(x0,y0),则:数学公式
当m的值变化时,顶点横、纵坐标x0,y0的值也随之变化,将(3)代入(4)
得:y0=2x0-1.…(5)
可见,不论m取任何实数时,抛物线的顶点坐标都满足y=2x-1.
解答问题:
①在上述过程中,由(1)到(2)所用的数学方法是______,其中运用的公式是______.由(3)、(4)得到(5)所用的数学方法是______.
②根据阅读材料提供的方法,确定抛物线y=x2-2mx+2m2-4m+3的顶点纵坐标y与横坐标x之间的函数关系式.
③是否存在实数m,使抛物线y=x2-2mx+2m2-4m+3与x轴两交点A(x1,0)、B(x2,0)之间的距离为AB=4,若存在,求出m的值;若不存在,说明理由(提示:|x1-x2|2=(x1+x22-4x1x2).

查看答案和解析>>

已知抛物线的解析式为y=-x2+2mx+4-m2
(1)求证:不论m取何值,此抛物线与x轴必有两个交点,且两交点A、B之间的距离为定值;
(2)设点P为此抛物线上一点,若△PAB的面积为8,求符合条件的所有点P的坐标(可用含m的代数式表示)
(3)若(2)中△PAB的面积为s(s>0),试根据面积s值的变化情况,确定符合条件的点P的个数.

查看答案和解析>>


同步练习册答案