29.如图.抛物线y=ax2+bx+c与x轴交于A.B两点(点A在点B左侧).与y轴交于点C.且当x=0和x=2时.y的值相等.直线y=3x - 7与这条抛物线相交于两点.其中一点的横坐标是4.另一点是这条抛物线的顶点M. 查看更多

 

题目列表(包括答案和解析)

如图,抛物线yax2bx-4与x轴交于A(4,0)、B(-2,0)两点,与y轴交于点C,点P是线段AB上一动点(端点除外),过点PPDAC,交BC于点D,连接CP
(1)求该抛物线的解析式;
(2)当动点P运动到何处时,BP2BD·BC
(3)当△PCD的面积最大时,求点P的坐标.

查看答案和解析>>

如图,抛物线y=ax2+bx+c经过原点O,与x轴交于另一点N,直线y=kx+4与两坐标轴分别交于A、D两点,与抛物线交于点B(1,m)、C(2,2).

1.求直线与抛物线的解析式.

2.若抛物线在x轴上方的部分有一动点P(x,y),设∠PON=,求当△PON的面积最大时tan的值.

3.若动点P保持(2)中的运动线路,问是否存在点P,使得△POA的面积等于△PON的面积的?若存在,请求出点P的坐标;若不存在,请说明理由

 

查看答案和解析>>

如图,抛物线y=ax2+bx+c经过原点O,与x轴交于另一点N,直线y=kx+4与两坐标轴分别交于A、D两点,与抛物线交于点B(1,m)、C(2,2).

【小题1】求直线与抛物线的解析式.
【小题2】若抛物线在x轴上方的部分有一动点P(x,y),设∠PON=,求当△PON的面积最大时tan的值.
【小题3】若动点P保持(2)中的运动线路,问是否存在点P,使得△POA的面积等于△PON的面积的?若存在,请求出点P的坐标;若不存在,请说明理由

查看答案和解析>>

(10分)如图,抛物线F:y=ax2+bx+c的顶点为P,抛物线F与轴交于点A,
过点P作PD⊥x轴于点D,平移抛物线F使其经过点A、D得到抛物线F ′:
y=a′x2+b′x+c′,抛物线F ′与x轴的另一个交点为C.
(1)当a=1,b=-2,c=3时,
①写出点D的坐标  ▲ ;②求b: 的值;
(2)若a、b、c满足b2=ac,探究b: 的值是否为定值?若是定值请求出这个定值;若不是请说明理由.

查看答案和解析>>

如图,抛物线yax2bxc(a≠0)与x轴交于点A(-1,0)、B(3,0),与y

轴交于点C(0,3).

(1)求抛物线的解析式及顶点D的坐标;

(2)若P为线段BD上的一个动点,过点PPMx轴于点M,求四边形PMAC的面积的最大值和此时点P的坐标;

查看答案和解析>>


同步练习册答案