请仿照上例解下列问题:(1),(2) 查看更多

 

题目列表(包括答案和解析)

阅读材料,解答下列问题.
例:当a>0时,如a=6,则|a|=|6|=6,故此时|a|是它本身;当a=0时,|a|=0,故此时|a|是零;
当a<0时,如a=-6,则|a|=|-6|=6=-(-6),故此时|a|是它的相反数.
综上所述,|a|可分三种情况,即|a|=
a(a>0)
0(a=0)
-a(a<0)

这种分析方法渗透了数学的分类讨论思想.
问:(1)请仿照例中的分类讨论的方法,分析二次根式
a2
的各种展开的情况.
(2)猜想
a2
与|a|的大小关系是
a2
 
|a|.
(3)当1<x<2时,试化简:|x-1|+
(x-2)2

查看答案和解析>>

阅读材料,解答下列问题.
例:当a>0时,如a=6则|a|=|6|=6,故此时a的绝对值是它本身;
当a=0时,|a|=0,故此时a的绝对值是零;
当a<0时,如a=-6则|a|=|-6|=-(-6),故此时a的绝对值是它的相反数.
∴综合起来一个数的绝对值要分三种情况,即
|a|=
a  当a>0
0    当a=0
-a 当a<0

问:(1)这种分析方法涌透了
分类讨论
分类讨论
数学思想.
(2)请仿照例中的分类讨论的方法,分析二次根式
a2
的各种展开的情况.
(3)猜想
a2
与|a|的大小关系.
(4)尝试用从以上探究中得到的结论来解决下面的问题:化简
(x-5)2
+
(x+3)2
(-3≤x≤5).

查看答案和解析>>

阅读材料,解答下列问题.
例:当a>0时,如a=6,则|a|=|6|=6,故此时|a|是它本身;当a=0时,|a|=0,故此时|a|是零;
当a<0时,如a=-6,则|a|=|-6|=6=-(-6),故此时|a|是它的相反数.
综上所述,|a|可分三种情况,即|a|=数学公式
这种分析方法渗透了数学的分类讨论思想.
问:(1)请仿照例中的分类讨论的方法,分析二次根式数学公式的各种展开的情况.
(2)猜想数学公式与|a|的大小关系是数学公式______|a|.
(3)当1<x<2时,试化简:数学公式

查看答案和解析>>

阅读材料,解答下列问题.
例:当a>0时,如a=6则|a|=|6|=6,故此时a的绝对值是它本身;
当a=0时,|a|=0,故此时a的绝对值是零;
当a<0时,如a=-6则|a|=|-6|=-(-6),故此时a的绝对值是它的相反数.
∴综合起来一个数的绝对值要分三种情况,即
|a|=数学公式
问:(1)这种分析方法涌透了______数学思想.
(2)请仿照例中的分类讨论的方法,分析二次根式数学公式的各种展开的情况.
(3)猜想数学公式与|a|的大小关系.
(4)尝试用从以上探究中得到的结论来解决下面的问题:化简数学公式(-3≤x≤5).

查看答案和解析>>

阅读材料,解答下列问题.
例:当a>0时,如a=6,则|a|=|6|=6,故此时|a|是它本身;当a=0时,|a|=0,故此时|a|是零;
当a<0时,如a=-6,则|a|=|-6|=6=-(-6),故此时|a|是它的相反数.
综上所述,|a|可分三种情况,即|a|=
这种分析方法渗透了数学的分类讨论思想.
问:(1)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况.
(2)猜想与|a|的大小关系是______|a|.
(3)当1<x<2时,试化简:

查看答案和解析>>


同步练习册答案