例3.O是平面上一定点.A.B.C是平面上不共线的三个点.动点P满足..则P的轨迹一定通过△ABC的(A)外心 (B)内心 (C)重心 (D)垂心分析:因为同向的单位向量.由向量加法的平行四边形则知是与∠ABC的角平分线同向的一个向量.又.知P点的轨迹是∠ABC的角平分线.从而点P的轨迹一定通过△ABC的内心.反思:根据本题的结论.我们不难得到求一个角的平分线所在的直线方程的步骤,(1) 由顶点坐标或直线方程求得角两边的方向向量,(2) 求出角平分线的方向向量(3) 由点斜式或点向式得出角平分线方程.{直线的点向式方程:过P().其方向向量为.其方程为} 查看更多

 

题目列表(包括答案和解析)

据权威人士分析“严格来讲,我国目前已进入负利率时代”,“钱在银行缩水”.以一年期存款利率1.98%为例,现考虑2003年物价指数上升3.2%和利息税20%两方面因素,实际利息率为-1.616%(即1.98%×(1-20%)-3.2%),这意味将100000元人民币存入银行,1年后实际价值为98384元,1616元白白“蒸发”.据初步估计2004年物价指数将上升2.2%,假设其它条件不变,请你计算一下某人2004年年初存入银行100000元,1年后的实际价值变为


  1. A.
    99464元
  2. B.
    99384元
  3. C.
    98384元
  4. D.
    100616元

查看答案和解析>>

12、某地区原有可退耕还林面积63.68万亩,从2000年开始执行国家退耕还林政策,当年就退耕还林8万亩,此后退耕还林的面积逐年增加,到2002年底共退耕还林29.12万亩.
(1)求2001年、2002年退耕还林面积的平均增长率.(参考数据:3.42=11.56)
(2)该地区从2003年起加大退耕还林的力度.设2003年退耕还林的面积为y万亩,退耕还林面积的增长率为x.试写出y与x的函数关系式,并求出当y不小于14.4万亩时x的取值范围.

查看答案和解析>>

2003年春季,我国部分地区SARS流行,党和政府采取果断措施,防治结合,很快使病情得到控制,下表是某同学记载的5月1日至5月12日每天北京市SARS治愈者数据,以及根据这些数据绘制出的散点图
日期 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12
人数 100 109 115 118 121 134 141 152 168 175 186 203
下列说法:
①根据此散点图,可以判断日期与人数具有线性相关关系;
②根据此散点图,可以判断日期与人数具有一次函数关系.
其中正确的个数为(  )

查看答案和解析>>

22、某地区原有可退耕还林面积63.68万亩,从2000年开始执行国家退耕还林政策,当年就退耕还林8万亩,此后退耕还林的面积逐年增加,到2002年底共退耕还林29.12万亩.
(1)求2001年、2002年退耕还林面积的平均增长率.(参考数据:3.42=11.56)
(2)该地区从2003年起加大退耕还林的力度.设2003年退耕还林的面积为y万亩,退耕还林面积的增长率为x.试写出y与x的函数关系式,并求出当y不小于14.4万亩时x的取值范围.

查看答案和解析>>

(2012•道里区二模)为了学生的全面发展,某中学在高一学年是推行“合理作业”(合理作业是指:放学后学生每天完成作业的时间不超过两小时)活动.高一学年共有学生2000人,其中男生1200人,女生800人,为了调查2012年3月(按30天计算)学生“合理作业”的天数情况,通过分层抽样的方法抽取了40人作为样本,统计他们在该月30天内“合理作业”的天数,并将所得的数据分成以下六组:[0,5],(5,10],(10,15],…,(25,30],由此画出样本的频率分布直方图,如图所示.
(1)求抽取的40人中男生、女生的人数;
(2)在抽取的40人中任取3人,设ξ为取出的三人中“合理作业”天数超过25天的人数,求ξ的分布列及数学期望Eξ.

查看答案和解析>>


同步练习册答案