评价:答案4.92符合城市实际情况.验算正确.所以到2000年底该市人均住房面积为4.92m.说明:一般地.涉及到利率.产量.降价.繁殖等与增长率有关的实际问题.可通过观察.分析.归纳出数据成等差数列还是等比数列.然后用两个基础数列的知识进行解答.此种题型属于应用问题中的数列模型. 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=xm+
2
x
f(4)=
9
2

(Ⅰ)求m的值;
(Ⅱ)判定f(x)的奇偶性;
(Ⅲ)判断f(x)在[
2
,+∞)
上的单调性,并给予证明.

查看答案和解析>>

为了减少碳排放量,某工厂进行技术改造,改造后生产甲产品 过程中记录产量x(吨)与相应的煤消耗量y(吨)数据如下表:
X 3 4 5 6
Y
5
2
3 4
9
2
(1)请画出上表数据的散点图;
(2)请根据上面的数据,求出y关于x的线性回归方程
?
y
=bx+a

(3)已知该厂技术改造前10吨甲产品需要煤12吨,试根据第二问求出的线性回归方程,预测生产10吨甲产品需要煤比技改前降低多少吨煤?

查看答案和解析>>

已知函数f(x)=xm+
2
x
f(4)=
9
2

(I)求m的值;
(II)判定f(x)的奇偶性;
(III)证明f(x)在[
2
,+∞)
上是单调递增函数.

查看答案和解析>>

对于问题:“已知两个正数x,y满足x+y=2,求
1
x
+
4
y
的最小值”,给出如下一种解法:
Qx+y=2,∴
1
x
+
4
y
=
1
2
(x+y)(
1
x
+
4
y
)
=
1
2
(5+
y
x
+
4x
y
)

Qx>0,y>0,∴
y
x
+
4x
y
≥2
y
x
4x
y
=4
,∴
1
x
+
4
y
1
2
(5+4)=
9
2

当且仅当
y
x
=
4x
y
x+y=2
,即
x=
2
3
y=
4
3
时,
1
x
+
4
y
取最小值
9
2

参考上述解法,已知A,B,C是△ABC的三个内角,则
1
A
+
9
B+C
的最小值为
16
π
16
π

查看答案和解析>>

对于问题:“已知两个正数x,y满足x+y=2,求
1
x
+
4
y
的最小值”,给出如下一种解法:
Qx+y=2,∴
1
x
+
4
y
=
1
2
(x+y)(
1
x
+
4
y
)
=
1
2
(5+
y
x
+
4x
y
)

Qx>0,y>0,∴
y
x
+
4x
y
≥2
y
x
4x
y
=4
,∴
1
x
+
4
y
1
2
(5+4)=
9
2

当且仅当
y
x
=
4x
y
x+y=2
,即
x=
2
3
y=
4
3
时,
1
x
+
4
y
取最小值
9
2

参考上述解法,已知A,B,C是△ABC的三个内角,则
1
A
+
9
B+C
的最小值为______.

查看答案和解析>>

例10.(2004年重庆卷)某工厂生产某种产品,已知该产品的月生产量(吨)与每吨产品的价格(元/吨)之间的关系式为:,且生产x吨的成本为(元).问该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入─成本)

解:每月生产x吨时的利润为

               

  ,故它就是最大值点,且最大值为:

        答:每月生产200吨产品时利润达到最大,最大利润为315万元.

 


同步练习册答案