解:(1)ξ.η的可能取值分别为3.2.1.0..根据题意知ξ+η=3.所以 P=. P= P= . P= . (2), 因为ξ+η=3.所以 查看更多

 

题目列表(包括答案和解析)

某苗圃基地为了解基地内甲、乙两块地种植的同一种树苗的长势情况,从两块地各随机抽取了10株树苗,分别测出它们的高度如下(单位:cm)
甲:19  20  21  23  25  29  32  33  37  41
乙:10  26  30  30  34  37  44  46  46  47
1
2
3
4
(1)用茎叶图表示上述两组数据,并对两块地抽取树苗的高度的平均数和中位数进行比较,写出两个统计结论;
(2)现苗圃基地将甲、乙两块地的树苗合在一起,按高度分成一、二两个等级,每个等级按不同的价格出售.某市绿化部门下属的2个单位计划购买甲、乙两地种植的树苗.已知每个单位购买每个等级树苗所需费用均为5万元,且每个单位对每个等级树苗买和不买的可能性各占一半,求该市绿化部门此次采购所需资金总额X的分布列及数学期望值E(X).

查看答案和解析>>

某苗圃基地为了解基地内甲、乙两块地种植的同一种树苗的长势情况,从两块地各随机抽取了10株树苗,分别测出它们的高度如下(单位:cm)

甲:19  20  21  23  25  29  32  33  37  41

乙:10  26  30  30  34  37  44  46  46  47

1

2

3

4

(1)用茎叶图表示上述两组数据,并对两块地抽取树苗的高度的平均数和中位数进行比较,写出两个统计结论;

(2)现苗圃基地将甲、乙两块地的树苗合在一起,按高度分成一、二两个等级,每个等级按不同的价格出售.某市绿化部门下属的2个单位计划购买甲、乙两地种植的树苗.已知每个单位购买每个等级树苗所需费用均为5万元,且每个单位对每个等级树苗买和不买的可能性各占一半,求该市绿化部门此次采购所需资金总额X的分布列及数学期望值E(X).

查看答案和解析>>

现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.

(Ⅰ)求这4个人中恰有2人去参加甲游戏的概率;

(Ⅱ)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;

(Ⅲ)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记,求随机变量的分布列与数学期望.

【解析】依题意,这4个人中,每个人去参加甲游戏的概率为,去参加乙游戏的概率为.

设“这4个人中恰有i人去参加甲游戏”为事件

.

(1)这4个人中恰有2人去参加甲游戏的概率

(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B,则.由于互斥,故

所以,这个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为.

(3)的所有可能取值为0,2,4.由于互斥,互斥,故

    

所以的分布列是

0

2

4

P

随机变量的数学期望.

 

查看答案和解析>>

在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个小球被取出的可能性相等。

(1)求取出的两个球上标号为相邻整数的概率;

(2)求取出的两个球上标号之和能被3整除的概率.

【解析】本试题主要考查了古典概型概率的求解。第一问中,基本事件数为共有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),

(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)

总数为16种.其中取出的两个小球上标号为相邻整数的基本事件有:

(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)共6种利用古典概型可知,P=3 /8 ;

(2)其中取出的两个小球上标号之和能被3整除的基本事件有:

(1,2),(2,1),(2,4),(3,3),(4,2)共5种可得概率值5 /16 ;

解:甲、乙两个盒子里各取出1个小球计为(X,Y)则基本事件

共有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),

(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)

总数为16种.

(1)其中取出的两个小球上标号为相邻整数的基本事件有:

(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)共6种

故取出的两个小球上标号为相邻整数的概率P=3 /8 ;

(2)其中取出的两个小球上标号之和能被3整除的基本事件有:

(1,2),(2,1),(2,4),(3,3),(4,2)共5种

故取出的两个小球上标号之和能被3整除的概率为5 /16 ;

 

查看答案和解析>>

例10.(2004年重庆卷)某工厂生产某种产品,已知该产品的月生产量(吨)与每吨产品的价格(元/吨)之间的关系式为:,且生产x吨的成本为(元).问该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入─成本)

解:每月生产x吨时的利润为

               

  ,故它就是最大值点,且最大值为:

        答:每月生产200吨产品时利润达到最大,最大利润为315万元.

 


同步练习册答案