存在无穷多条“相关弦 .给定x0>2.(I)证明:点P(x0,0)的所有“相关弦 中的中点的横坐标相同,(II) 试问:点P(x0,0)的“相关弦 的弦长中是否存在最大值?若存在.求其最大值(用x0表示):若不存在.请说明理由.解: (I)设AB为点P(x0,0)的任意一条“相关弦 .且点A.B的坐标分别是(x1,y1).(x2,y2)(x1x2),则y21=4x1, y22=4x2, 查看更多

 

题目列表(包括答案和解析)

若A、B是抛物线y2=4x上的不同两点,弦AB(不平行于y轴)的垂直平分线与x轴相交于点P,则称弦AB是点P的一条“相关弦”.已知当x>2时,点P(x,0)存在无穷多条“相关弦”.给定x0>2.
(I)证明:点P(x0,0)的所有“相关弦”中的中点的横坐标相同;
(II)试问:点P(x0,0)的“相关弦”的弦长中是否存在最大值?若存在,求其最大值(用x0表示):若不存在,请说明理由.

查看答案和解析>>

(2009•崇明县二模)设椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的一个顶点坐标为A(0,-
2
),且其右焦点到直线y-x-2
2
=0
的距离为3.
(1)求椭圆C的轨迹方程;
(2)若A、B是椭圆C上的不同两点,弦AB(不平行于y轴)的垂直平分线与x轴相交于点M,则称弦AB是点M的一条“相关弦”,如果点M的坐标为M(
1
2
,0
),求证:点M的所有“相关弦”的中点在同一条直线上;
(3)对于问题(2),如果点M坐标为M(t,0),当t满足什么条件时,点M(t,0)存在无穷多条“相关弦”,并判断点M的所有“相关弦”的中点是否在同一条直线上.

查看答案和解析>>

(本小题满分13分)

A、B是抛物线y2=4x上的不同两点,弦AB(不平行于y轴)的垂直平分线与

x轴相交于点P,则称弦AB是点P的一条“相关弦”.已知当x>2时,点Px,0)

存在无穷多条“相关弦”.给定x0>2.

(I)证明:点Px0,0)的所有“相关弦”的中点的横坐标相同;

(II) 试问:点P(x0,0)的“相关弦”的弦长中是否存在最大值?

若存在,求其最大值(用x0表示):若不存在,请说明理由.

查看答案和解析>>

(湖南卷理20)若A、B是抛物线y2=4x上的不同两点,弦AB(不平行于y轴)的垂直平分线与x轴相交于点P,则称弦AB是点P的一条“相关弦”.已知当x>2时,点Px,0)存在无穷多条“相关弦”.给定x0>2.

(I)证明:点Px0,0)的所有“相关弦”的中点的横坐标相同;

(II) 试问:点P(x0,0)的“相关弦”的弦长中是否存在最大值?若存在,求其最大值(用x0表示):若不存在,请说明理由.

查看答案和解析>>

若A、B是抛物线y2=4x上的不同两点,弦AB(不平行于y轴)的垂直平分线与x轴相交于点P,则称弦AB是点P的一条“相关弦”.已知当x>2时,点P(x,0)存在无穷多条“相关弦”.给定x>2.
(I)证明:点P(x,0)的所有“相关弦”中的中点的横坐标相同;
(II)试问:点P(x,0)的“相关弦”的弦长中是否存在最大值?若存在,求其最大值(用x表示):若不存在,请说明理由.

查看答案和解析>>


同步练习册答案