由题意.得①.即 查看更多

 

题目列表(包括答案和解析)

解答:由题意得:

  解得:

,即

查看答案和解析>>

C

解答:由题意得:,即

查看答案和解析>>

在锐角△ABC中,∠A,∠B,∠C的对边分别是a,b,c.如图所示,过C作CD⊥AB于D,则cosA=数学公式
即AD=bcosA.
∴BD=c-AD=c-bcosA
在Rt△ADC和Rt△BDC中有CD2=AC2-AD2=BC2-BD2
∴b2-b2cos2A=a2-(c-bcosA)2
整理得:a2=b2+c2-2bccosA
同理可得:b2=a2+c2-2accosB
c2=a2+b2-2abcosC
这个结论就是著名的余弦定理,在以上三个等式中有六个元素a,b,c,∠A,∠B,∠C,若已知其中的任意三个元素,可求出其余的另外三个元素.
如:在锐角△ABC中,已知∠A=60°,b=3,c=6,
则由(1)式可得:a2=32+62-2×3×6cos60°=27
∴a=3数学公式,∠B,∠C则可由式子(2)、(3)分别求出,在此略.
根据以上阅读理解,请你试着解决如下问题:
已知锐角△ABC的三边a,b,c分别是7,8,9,求∠A,∠B,∠C的度数.(保留整数)

查看答案和解析>>

在锐角△ABC中,∠A,∠B,∠C的对边分别是a,b,c.如图所示,过C作CD⊥AB于D,则cosA=
即AD=bcosA.
∴BD=c-AD=c-bcosA
在Rt△ADC和Rt△BDC中有CD2=AC2-AD2=BC2-BD2
∴b2-b2cos2A=a2-(c-bcosA)2
整理得:a2=b2+c2-2bccosA
同理可得:b2=a2+c2-2accosB
c2=a2+b2-2abcosC
这个结论就是著名的余弦定理,在以上三个等式中有六个元素a,b,c,∠A,∠B,∠C,若已知其中的任意三个元素,可求出其余的另外三个元素.
如:在锐角△ABC中,已知∠A=60°,b=3,c=6,
则由(1)式可得:a2=32+62-2×3×6cos60°=27
∴a=3,∠B,∠C则可由式子(2)、(3)分别求出,在此略.
根据以上阅读理解,请你试着解决如下问题:
已知锐角△ABC的三边a,b,c分别是7,8,9,求∠A,∠B,∠C的度数.(保留整数)

查看答案和解析>>

在锐角△ABC中,∠A,∠B,∠C的对边分别是a,b,c.如图所示,过C作CD⊥AB于D,则cosA=
即AD=bcosA.
∴BD=c-AD=c-bcosA
在Rt△ADC和Rt△BDC中有CD2=AC2-AD2=BC2-BD2
∴b2-b2cos2A=a2-(c-bcosA)2
整理得:a2=b2+c2-2bccosA
同理可得:b2=a2+c2-2accosB
c2=a2+b2-2abcosC
这个结论就是著名的余弦定理,在以上三个等式中有六个元素a,b,c,∠A,∠B,∠C,若已知其中的任意三个元素,可求出其余的另外三个元素.
如:在锐角△ABC中,已知∠A=60°,b=3,c=6,
则由(1)式可得:a2=32+62-2×3×6cos60°=27
∴a=3,∠B,∠C则可由式子(2)、(3)分别求出,在此略.
根据以上阅读理解,请你试着解决如下问题:
已知锐角△ABC的三边a,b,c分别是7,8,9,求∠A,∠B,∠C的度数.(保留整数)

查看答案和解析>>


同步练习册答案