题目列表(包括答案和解析)
已知函数.
(1)若,求证:当时,;
(2)若在区间上单调递增,试求的取值范围;
(3)求证:.
设等比数列{}的前项和,首项,公比.
(1)证明:;
(2)若数列{}满足,,求数列{}的通项公式;
(3)若,记,数列{}的前项和为,求证:当时,.
(本小题满分14分)
已知数列满足:(其中常数).
(Ⅰ)求数列的通项公式;
(Ⅱ)求证:当时,数列中的任何三项都不可能成等比数列;
(Ⅲ)设为数列的前项和.求证:若任意,
已知函数,()在处取得最小值.
(Ⅰ)求的值;
(Ⅱ)若在处的切线方程为,求证:当时,曲线不可能在直线的下方;
(Ⅲ)若,()且,试比较与的大小,并证明你的结论.
22已知函数,若方程有且只有两个相异根0和2,且(1)求函数的解析式。(2)已知各项不为1的数列{an}满足,求数列通项an。(3)如果数列{bn}满足,求证:当时,恒有成立。
数学(文)
第I卷(共60分)
一、选择题(每小题5分,共60分)
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
A
B
D
B
A
A
D
A
C
B
A
A
第Ⅱ卷(共90分)
二、填空题(每小题4分,共16分)
13. 14.3 15.97 16.③
三、解答题(共74分)
17.(本小题满分12分)
(I)的内角和。
,
(Ⅱ)
当即时,取最大值
18.(本题满分12分)
记A:该夫妇生一个小孩是患病男孩,B:该夫妇生一个小孩是患病女孩:C:该夫妇生一个小孩是不患病男孩;D:该夫妇生一个小孩是不患病女孩,则
(I)
(Ⅱ)该夫妇所生的前两个是患病男孩,后一个患病女孩的概率为,所以
19.(本题满分12分)
解法一:(I)证明:连接,设,连接DE
三棱柱是正三棱柱,且,
四边形是正方形,
∴E是的中点,又是的中点,
∴
∵平面平面,
∴平面
(Ⅱ)解:在平面内作于点,在面;内作于连接。
∵平面平面,∴平面,
∵是在平面上的射影,
∴是二面角的平面角
设在正中,
在中,在中,
从而
所以,二面角的平面角的余弦值为
解法二:建立空间直角坐标系,如图,
(I)证明:连接设,连接,设
则
平面平面平面
(Ⅱ)解:∵
设是平面的法向量,则,且
故,取,得;
同理,可求得平面的法向量是
设二面角的大小为,则
所以,二面角的平面角的余弦值为
20.(本题满分12分)
(I),依题意,,即
解得
令,得或列表可得:
1
+
0
―
0
+
递增
极大
递减
极小
递增
所以,是极大值;是极小值
(Ⅱ)曲线方程为点不在曲线上,
设切点为,则点的坐标满足
因,故切线的方程为
注意到点在切线上,有
化简得,解得
21.(本题满分12分)
(I)将代入得,整理得
由得,故
(Ⅱ)当两条切线的斜率都存在而且不等于时,设其中一条的斜率为k,
则另外一条的斜率为
于是由上述结论可知椭圆斜率为k的切线方程为
①
又椭圆斜率为的切线方程为
②
由①得
由②得
两式相加得
于是,所求P点坐标满足因此,
当一条切线的斜率不存在时,另一条切线的斜率必为0,此时显然也有
所以为定值。
22.(本题满分14分)
(I)由知
当时,,化简得
①
以代替得
②
两式相减得
则,其中
所以,数列为等差数列
(Ⅱ)由,结合(I)的结论知
于是,
所以,原不等式成立
其他解法参照以上评分标准评分
本资料由《七彩教育网》www.7caiedu.cn 提供!
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com