解:猜想.数学归纳法证明,----------------------------4分 查看更多

 

题目列表(包括答案和解析)

已知函数,数列的项满足: ,(1)试求

(2) 猜想数列的通项,并利用数学归纳法证明.

【解析】第一问中,利用递推关系,

,   

第二问中,由(1)猜想得:然后再用数学归纳法分为两步骤证明即可。

解: (1) ,

,    …………….7分

(2)由(1)猜想得:

(数学归纳法证明)i) ,  ,命题成立

ii) 假设时,成立

时,

                              

综合i),ii) : 成立

 

查看答案和解析>>

已知递增等差数列满足:,且成等比数列.

(1)求数列的通项公式

(2)若不等式对任意恒成立,试猜想出实数的最小值,并证明.

【解析】本试题主要考查了数列的通项公式的运用以及数列求和的运用。第一问中,利用设数列公差为

由题意可知,即,解得d,得到通项公式,第二问中,不等式等价于,利用当时,;当时,;而,所以猜想,的最小值为然后加以证明即可。

解:(1)设数列公差为,由题意可知,即

解得(舍去).      …………3分

所以,.        …………6分

(2)不等式等价于

时,;当时,

,所以猜想,的最小值为.     …………8分

下证不等式对任意恒成立.

方法一:数学归纳法.

时,,成立.

假设当时,不等式成立,

时,, …………10分

只要证  ,只要证 

只要证  ,只要证 

只要证  ,显然成立.所以,对任意,不等式恒成立.…14分

方法二:单调性证明.

要证 

只要证  ,  

设数列的通项公式,        …………10分

,    …………12分

所以对,都有,可知数列为单调递减数列.

,所以恒成立,

的最小值为

 

查看答案和解析>>

已知,(其中

⑴求

⑵试比较的大小,并说明理由.

【解析】第一问中取,则;                         …………1分

对等式两边求导,得

,则得到结论

第二问中,要比较的大小,即比较:的大小,归纳猜想可得结论当时,

时,

时,

猜想:当时,运用数学归纳法证明即可。

解:⑴取,则;                         …………1分

对等式两边求导,得

,则。       …………4分

⑵要比较的大小,即比较:的大小,

时,

时,

时,;                              …………6分

猜想:当时,,下面用数学归纳法证明:

由上述过程可知,时结论成立,

假设当时结论成立,即

时,

时结论也成立,

∴当时,成立。                          …………11分

综上得,当时,

时,

时, 

 

查看答案和解析>>


同步练习册答案