(I)求证:平面BDC, (Ⅱ)求二面角D-AC-B的大小, (Ⅲ)求异面直线AC与BD所成角的大小. 查看更多

 

题目列表(包括答案和解析)

精英家教网在如图所示的几何体中,△ABC为正三角形,AE和CD都垂直于平面ABC,且AE=AB=2,CD=1,F为BE的中点.
(I)求证:平面DBE⊥平面ABE;
(II)求直线BD和平面ACDE所成角的余弦值.

查看答案和解析>>

精英家教网如图(1),四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿对角线BD折起,记折起后点A的位置为P,且使平面PBD⊥平面BCD,如图(2).
(I)求证:平面PBC⊥平面PDC;
(II)在折叠前的四边形ABCD中,作AE⊥BD于E,过E作EF⊥BC于F,求折起后的图形中∠PFE的正切值.

查看答案和解析>>

一个多面体的直观图和三视图如图所示:

(I)求证:PA⊥BD;
(II)连接AC、BD交于点O,在线段PD上是否存在一点Q,使直线OQ与平面ABCD所成的角为30°?若存在,求
|DQ||DP|
的值;若不存在,说明理由.

查看答案和解析>>

(2013•济宁二模)如图:C、D是以AB为直径的圆上两点,AB=2AD=2
3
,AC=BC,将圆沿直径AB折起,使点C在平面ABD内的射影E落在BD上.
(I)求证:平面ACD⊥平面BCD;
(Ⅱ)求三棱锥C-ABD的体积.

查看答案和解析>>

如图,等腰直角三角形SAB所在平面与直角梯形ABCD所在平面垂直,SA=SB=
2
且AB∥CD,DA⊥AB,AD=2,CD=4,E、F分别是线段SC、CD的中点.
(I)求证:平面BEF∥平面SAD;
(Ⅱ)求二面角S-BD-F的余弦值.

查看答案和解析>>


同步练习册答案