题目列表(包括答案和解析)
已知椭圆:的离心率为,且过点,设椭圆的右准线与轴的交点为,椭圆的上顶点为,直线被以原点为圆心的圆所截得的弦长为.
⑴求椭圆的方程及圆的方程;
⑵若是准线上纵坐标为的点,求证:存在一个异于的点,对于圆上任意一点,有为定值;且当在直线上运动时,点在一个定圆上.
(05年江西卷理)(14分)
如图,设抛物线的焦点为F,动点P在直线上运动,过P作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点.
(1)求△APB的重心G的轨迹方程.
(2)证明∠PFA=∠PFB.
(1)求△APB的重心G的轨迹方程.
(2)证明∠PFA=∠PFB.
在平面直角坐标系中,△的顶点坐标分别为,,点在直线上运动,为坐标原点,为△的重心,则的最小值为__________.
如图,正方体,则下列四个命题:
①在直线上运动时,三棱锥的体积不变;
②在直线上运动时,直线AP与平面ACD1所成角的大小不变;
③在直线上运动时,二面角的大小不变;
④M是平面上到点D和距离相等的点,则M点的轨迹是过点的直线
其中真命题的编号是 (写出所有真命题的编号).
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com