的条件下.求异面直线与所成角的余弦值. 查看更多

 

题目列表(包括答案和解析)

在直三棱柱中,

(1)求异面直线所成角的大小;

(2)若直线与平面所成角为,求三棱锥的体积.

(3)在(2)的条件下,求二面角C1-AB-C的大小.

查看答案和解析>>

如图,l1,l2是两条互相垂直的异面直线,点P,C在直线l1上,点A, B在直线l2上,M,N分别是线段AB,AP的中点,且PC=AC=a,PA=a,
(Ⅰ)证明:PC⊥平面ABC;
(Ⅱ)设平面MNC与平面PBC所成的角为θ(0°<θ≤90°)。现给出下列四个条件:①CM=AB;②AB=a;③CM⊥AB;④BC⊥AC。请你从中再选择两个条件以确定cosθ的值,并求解.

查看答案和解析>>

如图,l1、l2是两条互相垂直的异面直线,点P、C在直线l1上,点A、B在直线l2上,M、N分别是线段AB、AP的中点,且PC=AC=a,
(Ⅰ)证明:PC⊥平面ABC;
(Ⅱ)设平面MNC与平面PBC所成的角为θ(0°<θ≤90°).现给出下列四个条件:
;②;③CM⊥AB;④BC⊥AC.
请你从中再选择两个条件以确定cosθ的值,并求之.

查看答案和解析>>

本小题満分15分)
已知为直角梯形,//,, , , 平面

(1)若异面直线所成的角为,且,求;
(2)在(1)的条件下,设的中点,能否在上找到一点,使?
(3)在(2)的条件下,求二面角的大小.

查看答案和解析>>

本小题満分15分)

已知为直角梯形,//,, , , 平面

(1)若异面直线所成的角为,且,求;

(2)在(1)的条件下,设的中点,能否在上找到一点,使?

(3)在(2)的条件下,求二面角的大小.

 

 

 

查看答案和解析>>

一、选择题(本大题共有8个小题,每小题5分,共40分;在每个小题给出的四个选项中有且仅有一个符合题目要求的)

题号

1

2

3

4

5

6

7

8

答案

B

D

C

C

B

A

C

B

二、填空题(本大题共有6个小题,每小题5分,共30分;请把答案填在相应的位置)

题号

9

10

11

12

13

14

答案

-1+

8,70

24

①③④

三、解答题(本大题共6个小题,共80分;解答应写出文字说明,证明过程或演算步骤)

15.(本题满分13分)

    解:(1)

           

           

       (2)由题意,得

           

16.(本题满分13分)

    解:(1)这3封信分别被投进3个信箱的概率为

           

       (2)恰有2个信箱没有信的概率为

           

       (3)设信箱中的信箱数为

                    

                    

0

1

2

3

17.(本题满分13分)

    解:解答一:(1)在菱形中,连接是等边三角形。

                  

(2)

                  

                  

              (3)取中点,连结

                  

     解法二:(1)同解法一;

            (2)过点平行线交,以点为坐标原点,建立如图的坐标系

                  

                   二面角的大小为

              (3)由已知,可得点

                  

                   即异面直线所成角的余弦值为

18.(本题满分13分)

解:(1)将函数的图象向右平移一个单位,得到函数的图象,

        函数的图象关于点(0,0)对称,即函数是奇函数,

       

       

        由题意得:

        所以

   (2)由(1)可得

        故设所求两点为

       

        满足条件的两点的坐标为:

(3)

       

       

19.(本题满分14分)

解:(1)椭圆的右焦点的坐标为(1,0),

       

(2)

      

  (3)由(2)知

      

20.(本题满分14分)

解:(1)

           

       (2)由(1)知

           

       (3)

           

 

 


同步练习册答案