假设数列中存在三项(互不相等)成等比数列.则. 查看更多

 

题目列表(包括答案和解析)

(本小题16分)

已知数列满足:为常数),数列中,

(1)求

(2)证明:数列为等差数列;

(3)求证:数列中存在三项构成等比数列时,为有理数。

 

查看答案和解析>>

数列项和为,首项为,满足

(1)求数列的通项公式;

(2)是否存在,使(其中是与自然数无关的常数),若存在,求出的值,若不存在,说明理由;

(3)求证:为有理数的充要条件是数列中存在三项构成等比数列.

查看答案和解析>>

(本小题16分)
已知数列满足:为常数),数列中,
(1)求
(2)证明:数列为等差数列;
(3)求证:数列中存在三项构成等比数列时,为有理数。

查看答案和解析>>

已知数列满足:为常数),

数列中,

(1)求

(2)证明:数列为等差数列;

(3)求证:数列中存在三项构成等比数列时,为有理数。

查看答案和解析>>

 

已知数列满足:为常数),

数列中,

⑴求

⑵证明:数列为等差数列;

⑶求证:数列中存在三项构成等比数列时,为有理数。

 

 

 

 

 

 

 

 

查看答案和解析>>


同步练习册答案