⑵如图⑵.在OA.OC边上选取适当的点E′.F.将△E′OF沿E′F折叠.使O点落在AB边上的D′点.过D′作D′G∥A′O交E′F于T点.交OC′于G点.求证:TG=A′E′ 查看更多

 

题目列表(包括答案和解析)

如图1,已知矩形OABC中,OC=10,OA=6,在OA、OC边上选取适当的点E、F,将△OEF沿EF对折,使O点落在AB边上的D点.
(1)当点E取在点A上,得图2,求出相应的OF的长;
(2)写出OF的取值范围;
(3)在如图1中过点D作DG∥AO交EF于点T,交OC于点G,连接OT,得到图3
①证明四边形OEDT是菱形;
②设AD长为x,请你利用所学的函数及其图象的有关知识判断,当x取什么值时,菱形OEDT的周长L取最大值,并求出周长L的最大值.
精英家教网

查看答案和解析>>

如图1,已知矩形OABC中,OC=10,OA=6,在OA、OC边上选取适当的点E、F,将△OEF沿EF对折,使O点落在AB边上的D点.
(1)当点E取在点A上,得图2,求出相应的OF的长;
(2)写出OF的取值范围;
(3)在如图1中过点D作DG∥AO交EF于点T,交OC于点G,连接OT,得到图3
①证明四边形OEDT是菱形;
②设AD长为x,请你利用所学的函数及其图象的有关知识判断,当x取什么值时,菱形OEDT的周长L取最大值,并求出周长L的最大值.

查看答案和解析>>

如图1,已知矩形OABC中,OC=10,OA=6,在OA、OC边上选取适当的点E、F,将△OEF沿EF对折,使O点落在AB边上的D点.
(1)当点E取在点A上,得图2,求出相应的OF的长;
(2)写出OF的取值范围;
(3)在如图1中过点D作DG∥AO交EF于点T,交OC于点G,连接OT,得到图3
①证明四边形OEDT是菱形;
②设AD长为x,请你利用所学的函数及其图象的有关知识判断,当x取什么值时,菱形OEDT的周长L取最大值,并求出周长L的最大值.

查看答案和解析>>

将边长OA=8,OC=10的矩形OABC放在平面直角坐标系中,顶点O为原点,顶点C、A分别在x轴和y轴上在OA、OC边上选取适当的点E、F,连接EF,将△EOF沿EF折叠,使点O落在AB边上的点D处。
(1)如图(1),当点F与点C重合时,OE的长度为____;
(2)如图(2),当点F与点C不重合时,过点D作DG∥y轴交EF于点T,交OC于点G。
求证:EO=DT;
(3)在(2)的条件下,设T(x,y),写出y与x之间的函数关系式:____,自变量x的取值范围是____;
(4)如图(3),将矩形OABC变为平行四边形,放在平面直角坐标系中,且OC=10,OC边上的高等于8,点F与点C不重合,过点D作DG∥y轴交EF 于点T,交OC于点G,求出这时T(x,y)的坐标y与x之间的函数关系式 (不求自变量x的取值范围)。

查看答案和解析>>

将边长OA=8,OC=10的矩形OABC放在平面直角坐标系中,顶点O为原点,顶点C、A分别在x轴和y轴上.在OA、OC边上选取适当的点E、F,连接EF,将△EOF沿EF折叠,使点O落在AB边上的点D处.
精英家教网
(1)如图1,当点F与点C重合时,OE的长度为
 

(2)如图2,当点F与点C不重合时,过点D作DG∥y轴交EF于点T,交OC于点G.求证:EO=DT;
(3)在(2)的条件下,设T(x,y),写出y与x之间的函数关系式为
 
,自变量x的取值范围是
 

(4)如图3,将矩形OABC变为平行四边形,放在平面直角坐标系中,且OC=10,OC边上的高等于8,点F与点C不重合,过点D作DG∥y轴交EF于点T,交OC于点G,求出这时T(x,y)的坐标y与x之间的函数关系式(不求自变量x的取值范围).

查看答案和解析>>


同步练习册答案