某年级组织学生参加夏令营活动,本次夏令营分为甲.乙.丙三组进行活动. 下面两幅统计图反映了学生报名参加夏令营的情况.请你根据图中的信息回答下列问题: 报名人数分布直方图 报名人数扇形分布图 查看更多

 

题目列表(包括答案和解析)

26、某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行活动.下面两幅统计图反映了学生报名参加夏令营的情况,请你根据图中的信息回答下列问题:
(1)该年级报名参加丙组的人数为
25

(2)该年级报名参加本次活动的总人数
50
,并补全频数分布直方图;
(3)根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名学生到丙组?

查看答案和解析>>

(2013•瑞安市模拟)某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行.
下面两幅统计图反映了学生参加夏令营的报名情况,请你根据图中的信息回答下列问题:
(1)该年级报名参加本次活动的总人数为
50
50
人;
(2)该年级报名参加丙组的人数为
25
25
人,并补全频数分布直方图.

查看答案和解析>>

(2006•金华)某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行活动.下面两幅统计图反映了学生报名参加夏令营的情况,请你根据图中的信息回答下列问题:
(1)该年级报名参加丙组的人数为
25
25

(2)该年级报名参加本次活动的总人数
50
50
,并补全频数分布直方图;
(3)根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调
5
5
名学生到丙组?

查看答案和解析>>

(2010•本溪一模)某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行活动,如图两幅统计图反映了学生报名参加夏令营的情况,请你根据图中的信息回答下列问题:

(1)求该年级报名参加本次活动的总人数,并补全频数分布直方图;
(2)根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名学生到丙组?

查看答案和解析>>

(2012•包头)某年级组织学生参加夏令营活动,本次夏令营活动分为甲、乙、丙三组进行.如图条形统计图和扇形统计图反映了学生参加夏令营活动的报名情况,请你根据图中的信息回答下列问题:
(1)该年级报名参加本次活动的总人数为
60
60
人,报名参加乙组的人数为
12
12
人;
(2)补全条形统计图中乙组的空缺部分;
(3)根据实际情况,需从甲组抽调部分学生到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名学生到丙组?

查看答案和解析>>

说明:对于解题过程中有的题目可用多种解法(或多种证明方法),如果考生的解答与参考答案不同,请参照此评分标准酌情给分.

一. 选择题(本题共10小题,每小题4分,共40分)

题号

1

2

3

4

5

6

7

8

9

10

答案

C

A

B

B

D

B

A

D

C

C

评分标准

选对一题给4分,不选,多选,错选均不给分

二、填空题(本题有6小题,每小题5分,共30分)

11.X≠6 ;      12. 2;    13.8;           14.  65°;   

15.96 ;        16. (0,0),(0,),(0,-3)写对一个给3分,两个4分,三个给5分

三、解答题(本题有8小题,共80分)

17. (本题8分)

(1)解:原式=1+3-                                          …………(3分)

                                                  …………(1分)

(2)解:愿方程可化为:x=3(x-2 )                                 …………(2分)

                    x=3                                      …………(1分)

经检验 :x=3 是原方程的解.                              …………(1分)

18.(本题8分)

添加条件例举:AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC等.     ……(2分)

证明例举(以添加条件AD=BC为例):

∵ AB=AB,∠1=∠2,BC=AD,                         …………(2分)

∴ △ABC≌△BAD.                                        …………(2分)

        ∴ AC=BD.                                               …………(2分)

19.(本题8分)

(1);                          …………(3分)

 (2)列对表格或画对树状图;                 …………(3分)

   两次都取到欢欢的概率为.                …………(2分)

20.(本题8分)

答案不唯一.只要符合要求,画对一个给4分,画对两个给8分.        ……(8分)

21.(本题8分)

(1)∵AB是⊙O直径,∴∠ACB=Rt∠.∴sin∠BAC=.     ………(3分)

(2)∵OE⊥AC,O是⊙O的圆心, ∴E是AC中点.∴OE=BC=.      …(3分)

(3)∵AC==4, ∴tan∠ADC= tan∠ABC=.          ……(2分)

22.(本题10分)

(1) 25 ;                                                 ……………(2分)

(2) 50;                              ……………(2分)

   画对条形统计图                          ……………(2分)

(3)5人;(列对方程得2分,给出答案给2分)           ……………(4分)

23.(本题12分)

(1);                                                  ………………(2分)

 (2)-x2+2x  ,1, ; (每格2分)                      ……………(6分)

(3)设AB长为m,那么AD为

     S=?=-.                   ……………(2分)

  当时,S最大.                     ……………(2分)

24.(本题14分)

(1)直线AB解析式为:y=x+.                            ……………(3分)

(2)方法一:设点C坐标为(x,x+),那么OD=x,CD=x+.  

.              ………(2分)

由题意:,解得(舍去)     ………(2分)

∴ C(2,)                     ………(1分)

方法二:∵ ,,∴.…(2分)

由OA=OB,得∠BAO=30°,AD=CD.

∴ CD×AD=.可得CD=.  ………(2分)

∴ AD=1,OD=2.∴C(2,).           ………(1分)

(3)当∠OBP=Rt∠时,如图

      ①若△BOP∽△OBA,则∠BOP=∠BAO=30°,BP=OB=3,

(3,).                                              ……(2分)

      ②若△BPO∽△OBA,则∠BPO=∠BAO=30°,OP=OB=1.

(1,).                       …………(1分)

当∠OPB=Rt∠时

③ 过点P作OP⊥BC于点P(如图),此时△PBO∽△OBA,∠BOP=∠BAO=30°

过点P作PM⊥OA于点M.

方法一: 在Rt△PBO中,BP=OB=,OP=BP=

∵ 在Rt△PMO中,∠OPM=30°,

∴ OM=OP=;PM=OM=.∴).  ……(1分)

方法二:设P(x ,x+),得OM=x ,PM=x+

由∠BOP=∠BAO,得∠POM=∠ABO.

∵tan∠POM=== ,tan∠ABOC==

x+x,解得x=.此时,).     ……(1分)

④若△POB∽△OBA(如图),则∠OBP=∠BAO=30°,∠POM=30°.   

    ∴ PM=OM=

∴ )(由对称性也可得到点的坐标).…………(2分)

当∠OPB=Rt∠时,点P在x轴上,不符合要求.

综合得,符合条件的点有四个,分别是:

(3,),(1,),),).

注:四个点中,求得一个P点坐标给2分,两个给3分,三个给4分,四个给6分.


同步练习册答案