③;④.其中正确命题的个数有A.1个 B.2个 C.3个 D.4个 查看更多

 

题目列表(包括答案和解析)

命题甲“两条直线确定一个平面”,命题乙“两组对边相等的四边形是平行四边形”,命题丙“两组对边分别平行的四边形是平行四边形”,命题丁“有三个角都是直角的四边形是矩形”.其中正确命题的个数是


  1. A.
    0个
  2. B.
    3个
  3. C.
    2个
  4. D.
    1个

查看答案和解析>>

命题“若方程x2+a=0无实根,则a≥0”其中原命题、逆命题、否命题、逆否命题中,正确的命题个数有

    A.1个          B.2个           C. 3个            D.4个

查看答案和解析>>

命题甲“两条直线确定一个平面”,命题乙“两组对边相等的四边形是平行四边形”,命题丙“两组对边分别平行的四边形是平行四边形”,命题丁“有三个角都是直角的四边形是矩形”.其中正确命题的个数是      

[  ]

A0个   B3个   C2个   D1

查看答案和解析>>

命题:(1)底面是正多边形的棱锥,一定是正棱锥;(2)所有的侧棱相等的棱锥一定是正棱锥;(3)正棱锥的棱相等;(4)用一个平面截棱锥,夹在底面与截面间的几何体称为棱台,其中正确的个数为

[  ]

A.0

B.1

C.2

D.3

查看答案和解析>>

下列命题中
(1)常数列既是等差数列又是等比数列;
(2)a∈(0,
π
2
),则aina+
1
sina
有最小值2
(3)若数列{an}前n项和Sn=Pn,则无论P取何值时{an}一定不是等比数列.
(4)在△ABC中,B=60°,b=6
3
,a=10,则满足条件的三角形只有一个.
(5)函数f(x)=cos2x-sin2x的最小正周期为2π其中正确命题的序号是
(3),(4)
(3),(4)

查看答案和解析>>

一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.

二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.

三、解答右端所注分数,表示考生正确做到这一步应得的累加分数.

四、只给整数分数,选择题和填空题不给中间分数.

一.选择题:CCDAB   CBDAD

1.选C.

2.将各选项代入检验易得答案选C.

3.由函数以为周期,可排除A、B,由函数在为增函数,可排除C,故选D。

5.正确命题有②、④,故选B.

6.

,故选C。

7.将圆的方程化为标准方程得,由数形结合不难得出所求的距离差为已知圆的直径长.,故选B.

8.该程序的功能是求和,因输出结果,故选D.

9.如图设点P为AB的三等分点,要使△PBC的面积不小于,则点P只能在

AP上选取,由几何概型的概率

公式得所求概率为.故选A.

10.如图:易得答案选D.

二.填空题:11.800、20%;12. 3;13. ①③④⑤;14. ; 15.

11.由率分布直方图知,及格率==80%,

及格人数=80%×1000=800,优秀率=%.

12.由

,得

13.显然①可能,②不可能,③④⑤如右图知都有可能。

14.在平面直角坐标系中,曲线分别表示圆和直线,易知

15. C为圆周上一点,AB是直径,所以AC⊥BC,而BC=3,AB=6,得∠BAC=30°,进而得∠B=60°,所以∠DCA=60°,又∠ADC=90°,得∠DAC=30°,

三.解答题:

16.解:(1)

              ------------------------4分

(2)∵

,

由正弦定理得:

------------6分

如图过点B作垂直于对岸,垂足为D,则BD的长就是该河段的宽度。

中,∵,------------8分

       (米)

∴该河段的宽度米。---------------------------12分

17.解:(1)设,()由成等比数列得

,----------------①,   

  ∴---------------②

由①②得,  ∴-----------------------------4分

,显然数列是首项公差的等差数列

------------------------------------6分

[或]

(2)∵

------------8分

2

---10分

。------------------------------------------12分

18.(1)解:∵

,

平面------------ ----------------2分

中, ,

中,

,

.--------------4分

(2)证法1:由(1)知SA=2, 在中,---6分

,∴-------------------8分

〔证法2:由(1)知平面,∵

,∵,,∴

又∵,∴

(3) ∵

为二面角C-SA-B的平面角---------10分

中,∵

,

∴即所求二面角C-SA-B为-------------------------14分

19.解:(1)依题意知,动点到定点的距离等于到直线的距离,曲线是以原点为顶点,为焦点的抛物线………………………………2分

    ∵      ∴ 

∴ 曲线方程是………4分

(2)设圆的圆心为,∵圆

∴圆的方程为  ……………………………7分

得:  

设圆与轴的两交点分别为

方法1:不妨设,由求根公式得

…………………………10分

又∵点在抛物线上,∴

∴ ,即=4--------------------------------------------------------13分

∴当运动时,弦长为定值4…………………………………………………14分

 〔方法2:∵ 

 又∵点在抛物线上,∴, ∴  

∴当运动时,弦长为定值4〕

20. 解:设AN的长为x米(x >2)

       ∵,∴|AM|=

∴SAMPN=|AN|•|AM|= ------------------------------------- 4分

(1)由SAMPN > 32 得  > 32 ,

       ∵x >2,∴,即(3x-8)(x-8)> 0

       ∴       即AN长的取值范围是----------- 8分

(2)令y=,则y′=  -------------- 10分

∵当,y′< 0,∴函数y=上为单调递减函数,

∴当x=3时y=取得最大值,即(平方米)

此时|AN|=3米,|AM|=米      ---------------------- 12分

21.解:

(1) 

---------------2分

,函数有一个零点;--------------3分

时,,函数有两个零点。------------4分

(2)令,则

 

内必有一个实根。

即方程必有一个实数根属于。------------8分

(3)假设存在,由①得

   

由②知对,都有

时,,其顶点为(-1,0)满足条件①,又,都有,满足条件②。

∴存在,使同时满足条件①、②。------------------------------14分

 


同步练习册答案