(Ⅱ)设函数在上的值域是A. 查看更多

 

题目列表(包括答案和解析)

14、设函数f(x)的定义域为D,若存在非零实数t使得对于任意x∈M(M⊆D),有x+t∈D,且f(x+t)≥f(x),则称f(x)为M上的t高调函数.如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围是
m≥2
.如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是
-1≤a≤1

查看答案和解析>>

设函数f(x)=
1
1-
x
(0≤x<1)
的反函数为f-1(x),则(  )
A、f-1(x)在其定义域上是增函数且最大值为1
B、f-1(x)在其定义域上是减函数且最小值为0
C、f-1(x)在其定义域上是减函数且最大值为1
D、f-1(x)在其定义域上是增函数且最小值为0

查看答案和解析>>

设函数f(x)的定义域为D,若存在非零常数l,使得对于任意x⊆M(M⊆D)都有f(x+l)≥f(x),则称f(x)为M上的高调函数,l是一个高调值.
现给出下列命题:
①函数f(x)=(
1
2
)
x
为R上的高调函数;
②函数f(x)=sin2x为R上的高调函数
③若函数f(x)=x2+2x为(-∞,1]上的高调函数,则高调值l的取值范围是(-∞,-4].
其中正确的命题个数是(  )
A、0个B、1个C、2个D、3个

查看答案和解析>>

设函数f(x)=lg(x2+ax-a-1),给出下述命题:①f(x)有最小值;②当a=0时,f(x)的值域为R;③若f(x)在区间[2,+∞)上单调递增,则实数a的取值范围是a≥-4.则其中正确的命题的序号是
 

查看答案和解析>>

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案