题目列表(包括答案和解析)
(本小题满分13分)有一问题,在半小时内,甲能解决它的概率是0.5,乙能解决它的概率是,
如果两人都试图独立地在半小时内解决它,计算:w.w.w.k.s.5.u.c.o.m
(1)两人都未解决的概率;
(2)问题得到解决的概率。
(本小题满分13分) 已知是等比数列, ;是等差数列, , .
(1) 求数列、的通项公式;
(2) 设+…+,…,其中,…试比较与的大小,并证明你的结论.
(本小题满分13分) 现有一批货物由海上从A地运往B地,已知货船的最大航行速度为35海里/小时,A地至B地之间的航行距离约为500海里,每小时的运输成本由燃料费和其余费用组成,轮船每小时的燃料费用与轮船速度的平方成正比(比例系数为0.6),其余费用为每小时960元.
(1)把全程运输成本y(元)表示为速度x(海里/小时)的函数;
(2)为了使全程运输成本最小,轮船应以多大速度行驶?
(本小题满分13分)
如图,ABCD的边长为2的正方形,直线l与平面ABCD平行,g和F式l上的两个不同点,且EA=ED,FB=FC, 和是平面ABCD内的两点,和都与平面ABCD垂直,
(Ⅰ)证明:直线垂直且平分线段AD:w.w.w.k.s.5.u.c.o.m
(Ⅱ)若∠EAD=∠EAB=60°,EF=2,求多面
体ABCDEF的体积。
一、A;A;C;D;A;A; C;C;B;C;C;A
二、13、或; 14、80; 15、-2;16、 ;
17、解:⑴
………………………………………3分
时,由得函数的递增区间为
时,由得函数的递增区间为…………………………………………5分
⑵
……………………………………………7分
时,得:(舍)
时,得
综上,……………………………………………………10分
18、解:用分别表示三列火车正点到达的事件,则
⑴恰有两列火车正点到达的概率记为,则
……………………………………………4分
⑵用表示误点的列数,则至少两列误点可表示为:
………………………………………………………6分
19.解:方法一:(I)证明:,
又平面平面ABCD,平面平面ABCD=BC,
平面ABCD ……2分
在梯形ABCD中,可得
,即
在平面ABCD内的射影为AO, ……4分
(II)解:,且平面平面ABCD
平面PBC, 平面PBC,
为二面角P―DC―B的平面角 ……6分
是等边三角形即二面角P―DC―B的大小为 …8分
(III)证明:取PB的中点N,连结CN, ①
,且平面平面ABCD,平面PBC ……10分
平面PAB 平面平面PAB ②
由①、②知平面PAB…………..10分
连结DM、MN,则由MN//AB//CD,,
得四边形MNCD为平行四边形,,平面PAB.
平面PAD 平面平面PAB ……………….12分
方法二:取BC的中点O,因为是等边三角形,
由侧面底面ABCD 得底面ABCD ……1分
以BC中点O为原点,以BC所在直线为x轴,过点O与AB平行的直线为y轴,建立如图所示的空间直角坐标系O―xyz……2分
(I)证明:,则在直角梯形中,
在等边三角形PBC中,……3分
,即…4分
(II)解:取PC中点N,则
平面PDC,显然,且平面ABCD
所夹角等于所求二面角的平面角 ……6分
,二面角的大小为 ……8分
(III)证明:取PA的中点M,连结DM,则M的坐标为
又 ……10分
,
即
平面PAB,平面平面PAB ……12分
20.解:Ⅰ由已知得: ……………………………………2分
当解得:…………………………………………3分
当时,,带入上式得:
配方得:
所以……………………………………………5分
所以……………………………………7分
Ⅱ
……………………………………………………………………10分
………………………12分
22解:⑴
则,所以……………………………3分
;由此可知
当时,函数单调递增
当时,函数单调递减,
当时,函数取极大值……………………………………………………………6分
⑵在区间上是单调减函数,
所以在区间上恒成立,有二次函数的图像可知:
;令……………………………………………9分
当直线经过交点时,取得最小值…………………………………13分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com