已知函数 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=4sin(2x-
π
3
)+1
,给定条件p:
π
4
≤x≤
π
2
,条件q:-2<f(x)-m<2,若p是q的充分条件,则实数m的取值范围为
 

查看答案和解析>>

已知函数f(x)是定义在实数集R上的不恒为零的偶函数,且对任意实数x都有xf(x+1)=(1+x)f(x),则f(f(
52
))的值是
 

查看答案和解析>>

已知函数g(x)=ax2-2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设f(x)=
g(x)
x

(Ⅰ)求a,b的值;
(Ⅱ)不等式f(2x)-k•2x≥0在x∈[-1,1]上恒成立,求实数k的范围;
(Ⅲ)方程f(|2x-1|)+k(
2
|2x-1|
-3)=0
有三个不同的实数解,求实数k的范围.

查看答案和解析>>

8、已知函数y=f(x)(x∈R)满足f(x+1)=f(x-1),且x∈[-1,1]时,f(x)=x2,则函数y=f(x)与y=log5x的图象的交点个数为(  )

查看答案和解析>>

已知函数f(x)=
3-x,x>0
x2-1.x≤0
,则f[f(-2)]=
 

查看答案和解析>>

 

第I卷(选择题 共60分)

一、选择题(每小题5分,共60分)

1―6ADDCAB  7―12CBBCBC

第Ⅱ卷(非选择题 共90分)

二、填空题(每小题4分,共16分)

13.2  14.   15.  16.①②

三、解答题(本大题共6小题,共74分)

17.解:(I)

      

      

          4分

       又    2分

   (II)    

           2分

             1分

      

      

              3分

18.(I)证明:由题意可知CD、CB、CE两两垂直。

       可建立如图所示的空间直角坐标系

       则       2分

       由  1分

      

       又平面BDF,

       平面BDF。       2分

   (Ⅱ)解:设异面直线CM与FD所成角的大小为

      

      

      

       即异面直线CM与FD所成角的大小为   3分

   (III)解:平面ADF,

       平面ADF的法向量为      1分

       设平面BDF的法向量为

       由

            1分

      

          1分

       由图可知二面角A―DF―B的大小为   1分

19.解:(I)设该小组中有n个女生,根据题意,得

      

       解得n=6,n=4(舍去)

       该小组中有6个女生。        6分

   (Ⅱ)由题意,甲、乙、丙3人中通过测试的人数不少于2人,

       即通过测试的人数为3人或2人。

       记甲、乙、丙通过测试分别为事件A、B、C,则

      

            6分

20.解:(I)的等差中项,

             1分

      

             2分

                1分

   (Ⅱ)

               2分

      

          3分

       ,   

       当且仅当时等号成立。

      

21.解:(I)到渐近线=0的距离为,两条准线之间的距离为1,

               3分

            1分

   (II)由题意,设

       由     1分

            3分

   (III)由双曲线和ABCD的对称性,可知A与C、B与D关于原点对称。

       而   

       1分

       点O到直线的距离   1分

              1分

             1分

22.解:(I)当t=1时,   1分

       当变化时,的变化情况如下表:

      

(-1,1)

1

(1,2)

0

+

极小值

       由上表,可知当    2分

            1分

   (Ⅱ)

      

       显然的根。    1分

       为使处取得极值,必须成立。

       即有    2分

      

       的个数是2。

   (III)当时,若恒成立,

       即   1分

      

       ①当时,

      

       上单调递增。

      

      

       解得    1分

       ②当时,令

       得(负值舍去)。

   (i)若时,

       上单调递减。

      

      

           1分

   (ii)若

       时,

       当

       上单调递增,

      

       要使,则

      

            2分

   (注:可证上恒为负数。)

       综上所述,t的取值范围是。        1分

 


同步练习册答案