在空间图形 S―ABC中.各棱长相等.D为SC的中点.则BD与SA所成角的余弦值是 查看更多

 

题目列表(包括答案和解析)

已知三棱锥O-ABC,∠BOC=90°,OA⊥平面BOC,其中OA=1,OB=2,OC=3,O,A,B,C四点均在球S的表面上,则球S的表面积为
 

查看答案和解析>>

如图,2012年春节,摄影爱好者S在某公园A处,发现正前方B处有一立柱,测得立柱顶端O的仰角和立柱底部B的俯角均为30°,已知S的身高约为
3
米(将眼睛距地面的距离按
3
米处理)
(1)求摄影者到立柱的水平距离和立柱的高度;
(2)立柱的顶端有一长2米的彩杆MN绕中点O在S与立柱所在的平面内旋转.摄影者有一视角范围为60°的镜头,在彩杆转动的任意时刻,摄影者是否都可以将彩杆全部摄入画面?说明理由.

查看答案和解析>>

在实数的原有运算法则中,我们补充定义新运算“⊕”,其中S=a?b的运算原理如图所示,则集合{y|y=(1⊕x)•x-(2⊕x),x∈[-2,2]}(注:“•”和“-”仍为通常的乘法和减法)的最大元素是(  )

查看答案和解析>>

设S是满足下列两个条件的实数所构成的集合:①1∉S;②若a∈S,则
1
1-a
∈S.试解答下列问题:
(1)若2∈S,则S中必还有其他两个元素,求出这两个元素;
(2)求证:若a∈S,则1-
1
a
∈S;
(3)在集合S中,元素的个数能否只有1个?请说明理由.

查看答案和解析>>

在△ABC中,若AB⊥AC,AC=b,BC=a,则△ABC的外接圆半径r=
a2+b2
2
,将此结论拓展到空间,可得出的正确结论是:在四面体S-ABC中,若SA、SB、SC两两垂直,SA=a,SB=b,SC=c,则四面体S-ABC的外接球半径R=
 

查看答案和解析>>

一.选择题:(本大共12小题,每小题5分,在每小题的四个选项中只有一个是正确的.)

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

D

D

C

D

A

B

C

B

C

A

D

二、填空题(本大题4个小题,每小题4分,共16分,只填结果,不要过程)

13、         3                   14、         9           

15、        240                 16、                   

三.解答题(本大题共6个小题,共74分,解答应写出文字说明、证明过程或演算步骤。)

17、证明:(1)连结,设

连结 是正方体   是平行四边形

                                       2分

分别是的中点,

是平行四边形                                         4分

∥面                                              6分

(2)                              7分

,                           

                                                  9分

同理可证,                                          11分

                                            12分

18.解:(1)=3125;------4分(2)A=120; ------8分(3)=1200-----12分.

19.(1)连接EO,EO∥PC,又6ec8aac122bd4f6e平面6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e平面6ec8aac122bd4f6e

平面6ec8aac122bd4f6e平面6ec8aac122bd4f6e               -----------------------------------------------------6分

6ec8aac122bd4f6e(2)ABCD为菱形,6ec8aac122bd4f6e,过O在平面OEB内作OF6ec8aac122bd4f6eBE于F,连OF, 6ec8aac122bd4f6eAFO为二面角6ec8aac122bd4f6e的平面角, tan6ec8aac122bd4f6eAFO =                    -------12分

20.(1)   ---------4分

   .(2) ---------8分

   .(3) ---------12分

 21.解:(1)过A作BC的反向延长线的垂线,交于点E,连ED,

∵面ACB⊥面BCD,∴AE⊥面BCD   又AB=BC=BD,

∠ABC=∠DBC=1200

∴AE=ED=          ∴∠ADE= ----------4分

(2)过D作EC的平行线与过C平行于ED的直线交于F。

由(1)知,EDFC为矩形 ∵DF⊥DE, ∴DF⊥AD,即BC⊥AD ∴ 900-即为所求   ----8分

(3)过E作EG⊥BD于G,连结AG

由三垂线定理知,AG⊥BD。由                                      ,            

 在Rt△AEG中,tan∠AGE=2, ∠AGE=arctan2

∴二面角A―BD―C的度数为 π-arctan2      -   -------12分

22. (1)∵B1D⊥面ABC    ∴B1D⊥AC

  又∵AC⊥BC 且B1D∩BC=D ∴平面   -------4分

(2)连结B1C和BC1     平面

∴B1C ⊥BC1  四边形是菱形   ---------6分

∵B1D⊥BC  且D为的中点 ∴B1C=BB1=BC   ∴=  ------9分

(3)过C1在平面内作C1O∥B1D,交BC的延长线于O点,

过O作OM⊥AB于M点,连结C1M∴C1O⊥平面,∴C1M⊥AB,   

∴∠OMC1是二面角的平面角---------11分

=3a ,  ∵

∴BD=a , C1O= B1D=a , BO=4a

∵∠CBA= , ∴OM=a =B1D , ∴∠OMC1=

∴二面角的大小为     ---------14分

 


同步练习册答案