题目列表(包括答案和解析)
在四面体ABCD中,DA⊥面ABC,∠ABC=90°,AE⊥CD,AF⊥DB.求证:
(1)EF⊥DC; (2)平面DBC⊥平面AEF; (3)若AD=AB=a,AC=求二面角B-DC-A的正弦值。
(本小题满分12分)如图,四棱锥P-ABCD的底面ABCD是直角梯形,∠DAB=∠ABC=90o,PA⊥底面ABCD,PA=AB=AD=2,BC=1,E为PD的中点.
(1) 求证:CE∥平面PAB;
(2) 求PA与平面ACE所成角的大小;
(3) 求二面角E-AC-D的大小.
一个水平放置的平面图形的斜二测直观图是直角梯形ABCD,如图所示,
∠ABC=45°,AB=AD=1,DC⊥BC,这个平面图形的面积为______
在△ABC中,AB=2,BC=1.5,∠ABC=120°,若使△ABC绕直线旋转一周,则所形成的几何体的体积是( ).
A.π B.π C.π D.π
((本小题满分12分)
如图,已知四棱锥P—ABCD的底面是直角梯形,∠ABC=∠BCD=90o,AB=BC=PB=PC=2CD=2,侧面PBC⊥底面ABCD,O是BC的中点,AO交BD于E.
(1)求证:PA⊥BD;
(2)求二面角P—DC—B的大小.
一.选择题:(本大共12小题,每小题5分,在每小题的四个选项中只有一个是正确的.)
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
B
D
D
C
D
A
B
C
B
C
A
D
二、填空题(本大题4个小题,每小题4分,共16分,只填结果,不要过程)
13、 3 14、 9
15、 240 16、
三.解答题(本大题共6个小题,共74分,解答应写出文字说明、证明过程或演算步骤。)
17、证明:(1)连结,设
连结, 是正方体 是平行四边形
∥且 2分
又分别是的中点,∥且
是平行四边形 4分
∥面,面
∥面 6分
(2)面 7分
又,
9分
同理可证, 11分
又
面 12分
18.解:(1)=3125;------4分(2)A=120; ------8分(3)=1200-----12分.
平面平面 -----------------------------------------------------6分
(2)ABCD为菱形,,过O在平面OEB内作OFBE于F,连OF, AFO为二面角的平面角, tanAFO = -------12分
20.(1) ---------4分
.(2) ---------8分
.(3) ---------12分
21.解:(1)过A作BC的反向延长线的垂线,交于点E,连ED,
∵面ACB⊥面BCD,∴AE⊥面BCD 又AB=BC=BD,
∠ABC=∠DBC=1200
∴AE=ED= ∴∠ADE= ----------4分
(2)过D作EC的平行线与过C平行于ED的直线交于F。
由(1)知,EDFC为矩形 ∵DF⊥DE, ∴DF⊥AD,即BC⊥AD ∴ 900-即为所求 ----8分
(3)过E作EG⊥BD于G,连结AG
由三垂线定理知,AG⊥BD。由 ,
在Rt△AEG中,tan∠AGE=2, ∠AGE=arctan2
∴二面角A―BD―C的度数为 π-arctan2 - -------12分
22. (1)∵B1D⊥面ABC ∴B1D⊥AC
又∵AC⊥BC 且B1D∩BC=D ∴平面 -------4分
(2)连结B
∴B
∵B1D⊥BC 且D为的中点 ∴B
(3)过C1在平面内作C1O∥B1D,交BC的延长线于O点,
过O作OM⊥AB于M点,连结C
∴∠OMC1是二面角的平面角---------11分
设=
∴BD=a , C1O= B1D=a , BO=
∵∠CBA= , ∴OM=a =B1D , ∴∠OMC1=
∴二面角的大小为 ---------14分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com