②函数与的值域相同, 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=lnx,g(x)=
1
2
ax2+bx(a≠0),h(x)=
2(x-1)
x+1

(1)当a=-2时,函数F(x)=f(x)-g(x)在其定义域范围是增函数,求实数b的取值范围;
(2)当x>1时,证明f(x)>h(x)成立;
(3)记函数f(x)与g(x)的图象分别是C1、C2,C1、C2相交于不同的两点P,Q,过线段PQ的中点R作垂直于x轴的垂线,与C1、C2分别交于M、N,问是否存在点R,使得曲线C1在M处的切线与曲线C2在N处的切线平行?若存在,试求出R点的坐标;若不存在,试说明理由.

查看答案和解析>>

已知函数f(x)=ax+bsinx,当x=
π
3
时,f(x)取得极小值
π
3
-
3

(1)求a,b的值;
(2)设直线l:y=g(x),曲线S:y=F(x).若直线l与曲线S同时满足下列两个条件:
①直线l与曲线S相切且至少有两个切点;
②对任意x∈R都有g(x)≥F(x).则称直线l为曲线S的“上夹线”.
试证明:直线l:y=x+2是曲线S:y=ax+bsinx的“上夹线”.
(3)记h(x)=
1
8
[5x-f(x)]
,设x1是方程h(x)-x=0的实数根,若对于h(x)定义域中任意的x2、x3,当|x2-x1|<1,且|x3-x1|<1时,问是否存在一个最小的正整数M,使得|h(x3)-h(x2)|≤M恒成立,若存在请求出M的值;若不存在请说明理由.

查看答案和解析>>

已知函数f(x)=ax+bsinx,当数学公式时,f(x)取得极小值数学公式
(1)求a,b的值;
(2)设直线l:y=g(x),曲线S:y=F(x).若直线l与曲线S同时满足下列两个条件:
①直线l与曲线S相切且至少有两个切点;
②对任意x∈R都有g(x)≥F(x).则称直线l为曲线S的“上夹线”.
试证明:直线l:y=x+2是曲线S:y=ax+bsinx的“上夹线”.
(3)记数学公式,设x1是方程h(x)-x=0的实数根,若对于h(x)定义域中任意的x2、x3,当|x2-x1|<1,且|x3-x1|<1时,问是否存在一个最小的正整数M,使得|h(x3)-h(x2)|≤M恒成立,若存在请求出M的值;若不存在请说明理由.

查看答案和解析>>

已知函数数学公式
(1)当a=-2时,函数F(x)=f(x)-g(x)在其定义域范围是增函数,求实数b的取值范围;
(2)当x>1时,证明f(x)>h(x)成立;
(3)记函数f(x)与g(x)的图象分别是C1、C2,C1、C2相交于不同的两点P,Q,过线段PQ的中点R作垂直于x轴的垂线,与C1、C2分别交于M、N,问是否存在点R,使得曲线C1在M处的切线与曲线C2在N处的切线平行?若存在,试求出R点的坐标;若不存在,试说明理由.

查看答案和解析>>

已知函数f(x)=lnx,g(x)=
1
2
ax2+bx(a≠0),h(x)=
2(x-1)
x+1

(1)当a=-2时,函数F(x)=f(x)-g(x)在其定义域范围是增函数,求实数b的取值范围;
(2)当x>1时,证明f(x)>h(x)成立;
(3)记函数f(x)与g(x)的图象分别是C1、C2,C1、C2相交于不同的两点P,Q,过线段PQ的中点R作垂直于x轴的垂线,与C1、C2分别交于M、N,问是否存在点R,使得曲线C1在M处的切线与曲线C2在N处的切线平行?若存在,试求出R点的坐标;若不存在,试说明理由.

查看答案和解析>>

一、选择题

1. C  2. A  3. C  4. D  5.D   6. B   7. C   8. B

二、填空题

9.   10.   11.  12.  13. ①③  14.(1,2)

三、解答题

15. 解:              1分

                      2分

                              ???3分

(Ⅰ)的最小正周期为;             ???6分

(Ⅱ)由                7分

                8分

     的单调增区间为     ???9分

(Ⅲ)因为,即                        10分

                                    11分

                                  ???12分

16.解:(Ⅰ)∵

∴当时,则        1分

解得             ???3分

         当时,则由       4分

解得                 ??6分

(Ⅱ)   当时,       ???7分

                             ???8分

中各项不为零                     ???9分

                                 ???10分

是以为首项,为公比的数列            ???11分

                              ???12分

17. (Ⅰ) 证明:∵

∴ 令,得                    ???1分

                                          ???2分

,得                       ???3分

     

∴函数为奇函数                                 ???4分

(Ⅱ) 证明:设,且                        ???5分

            ???6分

又∵当

     ∴                          ???7分

    即                                        ???8分

    ∴函数上是增函数                             ???9分

(Ⅲ) ∵函数上是增函数

     ∴函数在区间[-4,4]上也是增函数              ???10分

∴函数的最大值为,最小值为              ???11分

                       ???12分

∵函数为奇函数

                                 ???13分

故,函数的最大值为12,最小值为.             ???14分

18. 解:设甲现在所在位置为A,乙现在所在位置为B,运动t秒后分别到达位置C、D,如图可知CD即为甲乙的距离.   ??1分

时,   ??2分

          ??3分

              ??5分

时,               ??7分

时,C、B重合,      ??9分

时,

           ??10分

 

              ??12分   

                               ??13分

综上所述:经过2秒后两人距离最近为.   ??14分

19. 解证:(I)易得                      ???1分

的两个极值点

的两个实根,又

                               ???3分

                                   ???5分

                 ???6分

                                      ???8分

(Ⅱ)设

                            ???10分

              ???11分

上单调递减             ???12分

                                 ???13分

的最大值是                                ???14分

20.解:(Ⅰ)当时,,???1分

数列为等比数列,,故           ???2分

                                              ???3分

(Ⅱ)设数列公差

根据题意有:,             ???4分

即:

,代入上式有:     ???5分

,         ???7分

即关于不等式有解

                             ???8分

 

时,

                                           ???9分

                                           ???10分

(Ⅲ),记前n项和为          ???11分

         

         ???12分

              ???13分

                              ???14分

 


同步练习册答案