2008届六校第二次联考理科数学答题卷题号一二三总 分151617181920得分 第Ⅰ卷题 号12345678选 项 第Ⅱ卷 查看更多

 

题目列表(包括答案和解析)

(2012•安徽模拟)为了了解某校高三文科学生在皖南八校第二次联考的数学成绩,从全校400名文科学生成绩中抽取了 40名学生的成绩,将所得数据整理后,画出其频率分布直方图(如图).已知第一组与第六组的频数和为6,并且从左到右各长方形髙的比为 m:3:5:6:3:1.
(1)求m的值;
(2)估计该校文科学生成绩在120分以上的学生人数;
(3)从样本中成绩在第一组和第六组的所有学生成绩中任取两人成绩,求两人成绩之差大于50的概率.

查看答案和解析>>

为了了解某校高三文科学生在皖南八校第二次联考的数学成绩,从全校400名文科学生成绩中抽取了 40名学生的成绩,将所得数据整理后,画出其频率分布直方图(如图).已知第一组与第六组的频数和为6,并且从左到右各长方形髙的比为 m:3:5:6:3:1.
(1)求m的值;
(2)估计该校文科学生成绩在120分以上的学生人数;
(3)从样本中成绩在第一组和第六组的所有学生成绩中任取两人成绩,求两人成绩之差大于50的概率.

查看答案和解析>>

为了了解某校高三文科学生在皖南八校第二次联考的数学成绩,从全校400名文科学生成绩中抽取了 40名学生的成绩,将所得数据整理后,画出其频率分布直方图(如图).已知第一组与第六组的频数和为6,并且从左到右各长方形髙的比为 m:3:5:6:3:1.
(1)求m的值;
(2)估计该校文科学生成绩在120分以上的学生人数;
(3)从样本中成绩在第一组和第六组的所有学生成绩中任取两人成绩,求两人成绩之差大于50的概率.

查看答案和解析>>

为了了解某校高三文科学生在皖南八校第二次联考的数学成绩,从全校400名文科学生成绩中抽取了 40名学生的成绩,将所得数据整理后,画出其频率分布直方图(如图).已知第一组与第六组的频数和为6,并且从左到右各长方形髙的比为 m:3:5:6:3:1.
(1)求m的值;
(2)估计该校文科学生成绩在120分以上的学生人数;
(3)从样本中成绩在第一组和第六组的所有学生成绩中任取两人成绩,求两人成绩之差大于50的概率.

查看答案和解析>>

某校一次数学研究性学习活动中,一个密封的箱子内装有分别写上y=sinx,y=cosx,y=exy=
1
x
,y=-
1
x2
,lnx六个函数的六张外形完全一致的卡片(一张卡片一个函数),参与者有放回的抽取卡片,参与者只参加一次.如果只抽一张,抽得卡片上的函数是其它某一张卡片上函数的导数,抽取者将获得三等奖;如是先后各抽一张,抽出的卡片中,其中一张上的函数是另一张卡片上函数的导数,抽取者将获得二等奖;如果先后各抽一张,第一张卡片上的函数的导数是第二张卡片上的函数,抽取者将获得一等奖.
(Ⅰ)求学生甲抽一次获得三等奖的概率;
(Ⅱ)求学生乙抽一次获得二等奖的概率;
(Ⅲ)求学生丙抽一次获得一等奖的概率.

查看答案和解析>>

一、选择题

1. C  2. A  3. C  4. D  5.D   6. B   7. C   8. B

二、填空题

9.   10.   11.  12.  13. ①③  14.(1,2)

三、解答题

15. 解:              1分

                      2分

                              ???3分

(Ⅰ)的最小正周期为;             ???6分

(Ⅱ)由                7分

                8分

     的单调增区间为     ???9分

(Ⅲ)因为,即                        10分

                                    11分

                                  ???12分

16.解:(Ⅰ)∵

∴当时,则        1分

解得             ???3分

         当时,则由       4分

解得                 ??6分

(Ⅱ)   当时,       ???7分

                             ???8分

中各项不为零                     ???9分

                                 ???10分

是以为首项,为公比的数列            ???11分

                              ???12分

17. (Ⅰ) 证明:∵

∴ 令,得                    ???1分

                                          ???2分

,得                       ???3分

     

∴函数为奇函数                                 ???4分

(Ⅱ) 证明:设,且                        ???5分

            ???6分

又∵当

     ∴                          ???7分

    即                                        ???8分

    ∴函数上是增函数                             ???9分

(Ⅲ) ∵函数上是增函数

     ∴函数在区间[-4,4]上也是增函数              ???10分

∴函数的最大值为,最小值为              ???11分

                       ???12分

∵函数为奇函数

                                 ???13分

故,函数的最大值为12,最小值为.             ???14分

18. 解:设甲现在所在位置为A,乙现在所在位置为B,运动t秒后分别到达位置C、D,如图可知CD即为甲乙的距离.   ??1分

时,   ??2分

          ??3分

              ??5分

时,               ??7分

时,C、B重合,      ??9分

时,

           ??10分

 

              ??12分   

                               ??13分

综上所述:经过2秒后两人距离最近为.   ??14分

19. 解证:(I)易得                      ???1分

的两个极值点

的两个实根,又

                               ???3分

                                   ???5分

                 ???6分

                                      ???8分

(Ⅱ)设

                            ???10分

              ???11分

上单调递减             ???12分

                                 ???13分

的最大值是                                ???14分

20.解:(Ⅰ)当时,,???1分

数列为等比数列,,故           ???2分

                                              ???3分

(Ⅱ)设数列公差

根据题意有:,             ???4分

即:

,代入上式有:     ???5分

,         ???7分

即关于不等式有解

                             ???8分

 

时,

                                           ???9分

                                           ???10分

(Ⅲ),记前n项和为          ???11分

         

         ???12分

              ???13分

                              ???14分

 


同步练习册答案