则且.得.所以a的最大值为 -1 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=ex-ax,其中a>0.

(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

单调递减;当单调递增,故当时,取最小值

于是对一切恒成立,当且仅当.        ①

时,单调递增;当时,单调递减.

故当时,取最大值.因此,当且仅当时,①式成立.

综上所述,的取值集合为.

(Ⅱ)由题意知,

,则.当时,单调递减;当时,单调递增.故当

从而

所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使成立.

【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.

 

查看答案和解析>>

(2009•成都二模)已知空间向量
OA
=(1,K,0)(k∈Z)
|
OA
| ≤3
OB
=(3,1,0)
,O为坐标原点,给出以下结论:①以OA、OB为邻边的平行四边形OACB中,当且仅当k=2时,|
OC
|
取得最小值;②当k=2时,到A和点B等距离的动点P(x,y,z)的轨迹方程为4x-2y-5=0,其轨迹是一条直线;③若
OP
=(0,0,1)
,则三棱锥O-ABP体积的最大值为
7
6
;④若
OP
=(0,0,1),则三棱锥O-ABP各个面都为直角三角形的概率为
2
5
.其中,所有正确结论的应是

查看答案和解析>>

已知空间向量,O为坐标原点,给出以下结论:①以OA、OB为邻边的平行四边形OACB中,当且仅当k=2时,取得最小值;②当k=2时,到A和点B等距离的动点P(x,y,z)的轨迹方程为4x-2y-5=0,其轨迹是一条直线;③若,则三棱锥O-ABP体积的最大值为;④若=(0,0,1),则三棱锥O-ABP各个面都为直角三角形的概率为.其中,所有正确结论的应是   

查看答案和解析>>

已知空间向量数学公式数学公式数学公式,O为坐标原点,给出以下结论:①以OA、OB为邻边的平行四边形OACB中,当且仅当k=2时,数学公式取得最小值;②当k=2时,到A和点B等距离的动点P(x,y,z)的轨迹方程为4x-2y-5=0,其轨迹是一条直线;③若数学公式,则三棱锥O-ABP体积的最大值为数学公式;④若数学公式=(0,0,1),则三棱锥O-ABP各个面都为直角三角形的概率为数学公式.其中,所有正确结论的应是________.

查看答案和解析>>

本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题做答,满分14分,如果多做,则按所做的前两题计分,做答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中。

(1)(本小题满分7分)选修4-2:矩阵与变换

设矩阵(其中a>0,b>0).

(I)若a=2,b=3,求矩阵M的逆矩阵M-1

(II)若曲线C:x2+y2=1在矩阵M所对应的线性变换作用下得到曲线C’:,求a,b的值.

(2)(本小题满分7分)选修4-4:坐标系与参数方程

在直接坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为

(I)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,),判断点P与直线l的位置关系;

(II)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.

(3)(本小题满分7分)选修4-5:不等式选讲

设不等式的解集为M.

(I)求集合M;

(II)若a,b∈M,试比较ab+1与a+b的大小.

查看答案和解析>>


同步练习册答案