在平面直角坐标系中.已知点..是平面内一动点.直线. 查看更多

 

题目列表(包括答案和解析)

在平面直角坐标系中,已知点是平面内一动点,直线的斜率之积为

(Ⅰ)求动点的轨迹的方程;

(Ⅱ)过点作直线与轨迹交于两点,线段的中点为,求直线的斜率的取值范围.

查看答案和解析>>

在平面直角坐标系中,已知点P(1,-1),过点P作抛物线T0:y=x2的切线,其切点分别为M(x1,y1)、N(x2,y2)(其中x1<x2).
(Ⅰ)求x1与x2的值;
(Ⅱ)若以点P为圆心的圆E与直线MN相切,求圆E的面积;
(Ⅲ)过原点O(0,0)作圆E的两条互相垂直的弦AC,BD,求四边形ABCD面积的最大值.

查看答案和解析>>

在平面直角坐标系中,已知点A(
1
2
,0)
,向量
e
=(0,1)
,点B为直线x=-
1
2
上的动点,点C满足2
OC
=
OA
+
OB
,点M满足
BM
e
=0,
CM
AB
=0

(1)试求动点M的轨迹E的方程;
(2)设点P是轨迹E上的动点,点R、N在y轴上,圆(x-1)2+y2=1内切于△PRN,求△PRN的面积的最小值.

查看答案和解析>>

在平面直角坐标系中,已知点及直线,曲线是满足下列两个条件的动点的轨迹:其中到直线的距离;

(1) 求曲线的方程;

(2) 若存在直线与曲线、椭圆均相切于同一点,求椭圆离心率的取值范围.

 

查看答案和解析>>

在平面直角坐标系中,已知点

(1)求以线段AB、AC为邻边的平行四边形的两条对角线的长;

(2)设实数t满足求t的值。

 

查看答案和解析>>

一、              选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个备选项中,有且只有一项是符合要求的.

题号

1

2

3

4

5

6

7

8

答案

D

A

A

C

B

B

C

A

二、              填空题:本大题共7小题,每小题5分,共30分.其中13~15小题是选做题,考生只能选做两题,若三题全答,则只计算前两题得分.

9.             10.             11.

12.②③                                13.

14.                     15.

三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.

16.    解:(Ⅰ)因为,所以

   

因此,当,即)时,取得最大值

(Ⅱ)由,两边平方得

,即

因此,

17.    解:(Ⅰ)记“小球落入袋中”为事件,“小球落入袋中”为事件,则事件的对立事件为,而小球落入袋中当且仅当小球一直向左落下或一直向右落下,故

从而

(Ⅱ)显然,随机变量,故

18.    解: 建立如图所示的空间直角坐标系,

并设,则

    (Ⅰ)

所以,从而得

(Ⅱ)设是平面

法向量,则由

可以取

    显然,为平面的法向量.

    设二面角的平面角为,则此二面角的余弦值

19.    解:(Ⅰ)依题意,有),化简得

),

这就是动点的轨迹的方程;

    (Ⅱ)依题意,可设,则有

两式相减,得,由此得点的轨迹方程为

).

    设直线(其中),则

故由,即,解之得的取值范围是

20.    解:(Ⅰ)依题意知:直线是函数在点处的切线,故其斜率

所以直线的方程为

    又因为直线的图像相切,所以由

不合题意,舍去);

    (Ⅱ)因为),所以

时,;当时,

因此,上单调递增,在上单调递减.

因此,当时,取得最大值

(Ⅲ)当时,.由(Ⅱ)知:当时,,即.因此,有

21.    解:(Ⅰ)

(Ⅱ)依题意,得,由此及

    由(Ⅰ)可猜想:).

    下面用数学归纳法予以证明:

    (1)当时,命题显然成立;

    (2)假定当时命题成立,即有,则当时,由归纳假设及

,即

解之得

不合题意,舍去),

即当时,命题成立.

    由(1)、(2)知:命题成立.

(Ⅲ)

       

       

),则,所以上是增函数,故当时,取得最小值,即当时,

    ,即

   

解之得,实数的取值范围为


同步练习册答案