查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

已知函数

(1)证明:

(2)若数列的通项公式为,求数列 的前项和;w.w.w.k.s.5.u.c.o.m    

(3)设数列满足:,设

若(2)中的满足对任意不小于2的正整数恒成立,

试求的最大值。

查看答案和解析>>

(本小题满分14分)已知,点轴上,点轴的正半轴,点在直线上,且满足. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)当点轴上移动时,求动点的轨迹方程;

(Ⅱ)过的直线与轨迹交于两点,又过作轨迹的切线,当,求直线的方程.

查看答案和解析>>

(本小题满分14分)设函数

 (1)求函数的单调区间;

 (2)若当时,不等式恒成立,求实数的取值范围;w.w.w.k.s.5.u.c.o.m    

 (3)若关于的方程在区间上恰好有两个相异的实根,求实数的取值范围。

查看答案和解析>>

(本小题满分14分)

已知,其中是自然常数,

(1)讨论时, 的单调性、极值;w.w.w.k.s.5.u.c.o.m    

(2)求证:在(1)的条件下,

(3)是否存在实数,使的最小值是3,若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

(本小题满分14分)

设数列的前项和为,对任意的正整数,都有成立,记

(I)求数列的通项公式;

(II)记,设数列的前项和为,求证:对任意正整数都有

(III)设数列的前项和为。已知正实数满足:对任意正整数恒成立,求的最小值。

查看答案和解析>>

一、              选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个备选项中,有且只有一项是符合要求的.

题号

1

2

3

4

5

6

7

8

答案

D

A

A

C

B

B

C

A

二、              填空题:本大题共7小题,每小题5分,共30分.其中13~15小题是选做题,考生只能选做两题,若三题全答,则只计算前两题得分.

9.             10.             11.

12.②③                                13.

14.                     15.

三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.

16.    解:(Ⅰ)因为,所以

   

因此,当,即)时,取得最大值

(Ⅱ)由,两边平方得

,即

因此,

17.    解:(Ⅰ)记“小球落入袋中”为事件,“小球落入袋中”为事件,则事件的对立事件为,而小球落入袋中当且仅当小球一直向左落下或一直向右落下,故

从而

(Ⅱ)显然,随机变量,故

18.    解: 建立如图所示的空间直角坐标系,

并设,则

    (Ⅰ)

所以,从而得

(Ⅱ)设是平面

法向量,则由

可以取

    显然,为平面的法向量.

    设二面角的平面角为,则此二面角的余弦值

19.    解:(Ⅰ)依题意,有),化简得

),

这就是动点的轨迹的方程;

    (Ⅱ)依题意,可设,则有

两式相减,得,由此得点的轨迹方程为

).

    设直线(其中),则

故由,即,解之得的取值范围是

20.    解:(Ⅰ)依题意知:直线是函数在点处的切线,故其斜率

所以直线的方程为

    又因为直线的图像相切,所以由

不合题意,舍去);

    (Ⅱ)因为),所以

时,;当时,

因此,上单调递增,在上单调递减.

因此,当时,取得最大值

(Ⅲ)当时,.由(Ⅱ)知:当时,,即.因此,有

21.    解:(Ⅰ)

(Ⅱ)依题意,得,由此及

    由(Ⅰ)可猜想:).

    下面用数学归纳法予以证明:

    (1)当时,命题显然成立;

    (2)假定当时命题成立,即有,则当时,由归纳假设及

,即

解之得

不合题意,舍去),

即当时,命题成立.

    由(1)、(2)知:命题成立.

(Ⅲ)

       

       

),则,所以上是增函数,故当时,取得最小值,即当时,

    ,即

   

解之得,实数的取值范围为


同步练习册答案